首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础医学   2篇
药学   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Purpose: To study the pharmacokinetics and biodistribution of novel polyethyleneglycol (PEG) surface-modified poly(rac-lactide) (PLA) nanocapsules (NCs) and to investigate the influence of PEG chain length and content. Methods: The biodistribution and plasma clearance in mice of different NC formulations were studied with [3H]-PLA. PLA-PEG copolymers were used in NC preparations at different chain lengths (5 kDa and 20 kDa) and PEG contents (10% and 30% w/w of total polymer). In vitro and in vivo stability were also checked. Results: Limited [3H]-PLA degradation was observed after incubation in mouse plasma for 1 h, probably because of to the large surface area and thin polymer wall. After injection into mice, NCs prepared with PLA-PEG copolymers showed an altered distribution compared to poloxamer-coated PLA NCs. An increased concentration in plasma was also observed for PLA-PEG NCs, even after 24 h. A dramatic difference in the pharmacokinetic parameters of PLA-PEG 45-20 30% NCs compared to poloxamer-coated NCs indicates that covalent attachment, longer PEG chain lengths, and higher densities are necessary to produce an increased half-life of NCs in vivo. Conclusions: Covalently attached PEG on the surface of NCs substantially can reduce their clearance from the blood compartment and alter their biodistribution.  相似文献   
2.
The incorporation of growth factors into new methylidene malonate 2.1.2-based biocompatible polymeric blends of oligomers and polymers to improve their stability and controlled release was investigated. Five growth factors were used in this study: FGF2, PDGF, TGF-beta, NGF and GM-CSF. Formulation in poly(methylidene malonate 2.1.2) blends was achieved by a four-step optimized process, using different oligomers/polymers ratios. Once dried, formulations could be subsequently stored at 4 or 20 degrees C or immediately subjected to degradation in conditioned cell culture medium. Toxicity of blends and their degradation products were evaluated in several cell lines with MTT. Bioactivity and biospecificity of the formulated growth factors were investigated using MTT and immunohistochemical staining. Combined ELISA and crystal violet colorimetric assays were performed to analyze growth factors release. Limited toxicities were observed for unloaded poly(methylidene malonate 2.1.2) blends. Once optimized, growth factors formulations did not reveal lower bioactivities or loss of biospecificity. Moreover, a sustained release over a 21-day period with more than 90% of preserved bioactivity was reached. To conclude, dual growth factor delivery was made possible by the mean of poly(methylidene malonate 2.1.2) blends. These studies demonstrate the ability of methylidene malonate 2.1.2-based polymeric blends for the delivery of growth factors.  相似文献   
3.
Surface-engineered nanoparticles for multiple ligand coupling   总被引:10,自引:0,他引:10  
Gref R  Couvreur P  Barratt G  Mysiakine E 《Biomaterials》2003,24(24):4529-4537
The design of surface-engineered nanoparticles for targeting to specific sites is a major challenge. To our knowledge, no study in the literature deals with ligand functionalization of biodegradable nanoparticles through biotin-avidin interactions. With the aim of conceiving small-sized nanoparticles which can be easily functionalized with a variety of ligands or mixtures thereof, biotinylated and PEGylated biotin-poly(ethylene glycol)-poly(epsilon-caprolactone) (B-PEG-PCL) copolymers were synthesized and used to prepare nanoparticles of around 100 nm. Avidin, followed by biotinylated wheat germ agglutinin as a model lectin, were coupled to their surface by taking advantage of the strong biotin-avidin complex formation. The cytotoxicity of the nanospheres towards Caco-2 cells in culture was negligible (more than 82% cell survival for nanoparticle concentrations up to 300 microg/well). The amount of radiolabeled poly(lactic acid) (PLA) or PEG-PLA nanoparticles associated with Caco-2 cells was only 0.7% and 1.5% of the amount added, respectively. This value was increased to 8.5% when a sufficient amount of lectin was bound to the PEG-PLA copolymer. After further studies, the biotin-PEG-coated nanoparticles could be helpful tools for studying the interaction between cells and functionalized nanoparticles with various surface characteristics (PEG layer density and thickness, ligand type and density).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号