首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193669篇
  免费   1894篇
  国内免费   95篇
耳鼻咽喉   1382篇
儿科学   6906篇
妇产科学   3260篇
基础医学   18833篇
口腔科学   2944篇
临床医学   13433篇
内科学   34784篇
皮肤病学   1067篇
神经病学   17926篇
特种医学   9421篇
外科学   31989篇
综合类   2372篇
一般理论   6篇
预防医学   19125篇
眼科学   3143篇
药学   10811篇
中国医学   731篇
肿瘤学   17525篇
  2023年   117篇
  2022年   122篇
  2021年   541篇
  2020年   313篇
  2019年   410篇
  2018年   22350篇
  2017年   17657篇
  2016年   19859篇
  2015年   1406篇
  2014年   1422篇
  2013年   1556篇
  2012年   8107篇
  2011年   22270篇
  2010年   19431篇
  2009年   12069篇
  2008年   20407篇
  2007年   22653篇
  2006年   1458篇
  2005年   2986篇
  2004年   4151篇
  2003年   5034篇
  2002年   3179篇
  2001年   703篇
  2000年   864篇
  1999年   584篇
  1998年   370篇
  1997年   337篇
  1996年   204篇
  1995年   180篇
  1994年   187篇
  1993年   142篇
  1992年   391篇
  1991年   398篇
  1990年   433篇
  1989年   369篇
  1988年   340篇
  1987年   322篇
  1986年   299篇
  1985年   246篇
  1984年   165篇
  1983年   165篇
  1982年   79篇
  1980年   83篇
  1979年   118篇
  1978年   67篇
  1974年   72篇
  1973年   65篇
  1972年   67篇
  1970年   69篇
  1969年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Magnetic field generated by neuronal activity could alter magnetic resonance imaging (MRI) signals but detection of such signal is under debate. Previous researches proposed that magnitude signal change is below current detectable level, but phase signal change (PSC) may be measurable with current MRI systems. Optimal imaging parameters like echo time, voxel size and external field direction, could increase the probability of detection of this small signal change. We simulate a voxel of cortical column to determine effect of such parameters on PSC signal. We extended a laminar network model for somatosensory cortex to find neuronal current in each segment of pyramidal neurons (PN). 60,000 PNs of simulated network were positioned randomly in a voxel. Biot–savart law applied to calculate neuronal magnetic field and additional phase. The procedure repeated for eleven neuronal arrangements in the voxel. PSC signal variation with the echo time and voxel size was assessed. The simulated results show that PSC signal increases with echo time, especially 100/80 ms after stimulus for gradient echo/spin echo sequence. It can be up to 0.1 mrad for echo time = 175 ms and voxel size = 1.48 × 1.48 × 2.18 mm3. With echo time less than 25 ms after stimulus, it was just acquired effects of physiological noise on PSC signal. The absolute value of the signal increased with decrease of voxel size, but its components had complex variation. External field orthogonal to local surface of cortex maximizes the signal. Expected PSC signal for tactile detection in the somatosensory cortex increase with echo time and have no oscillation.  相似文献   
2.
3.
4.
5.
6.
7.
8.
Seven patients with advanced lateral oropharyngeal cancer (T3N2bM0, or T4N2bM0) underwent transoral lateral oropharyngectomy (TLO) with reconstruction performed through set-back tongue flap and polyglycolic acid (PGA) sheet. TLO was performed following en bloc resection of tumors using endoscopy. To cover the resulting defect in the lateral oropharyngeal wall, the set-back tongue flap was moved posteriorly and laterally to the area of the tongue base and lateral pharyngeal wall. The tip of the set-back tongue flap was sutured to the lateral pharynx to reconstruct the elevated tongue base and altered anterior pillar. The defect on the floor of the mouth was reconstructed using a PGA sheet. Following surgery, the mean observation period was 24 months. The mean operating time was 4 h and 2 min, with an average blood loss of 68.1 ml. All oral intake resumed on the first postoperative day via gastric tube. The mean gastric tube removal time was 1.6 postoperative days as a result of sufficient oral intake. None of the patients received postoperative radiotherapy or displayed evidence of tumor recurrence. We conclude that this novel procedure is highly effective for treating advanced oropharyngeal cancer as it demonstrates good prognostic and functional outcomes.  相似文献   
9.
10.
Farnesyltransferase (FTase) is one of the prenyltransferase family enzymes that catalyse the transfer of 15-membered isoprenoid (farnesyl) moiety to the cysteine of CAAX motif-containing proteins including Rho and Ras family of G proteins. Inhibitors of FTase act as drugs for cancer, malaria, progeria and other diseases. In the present investigation, we have developed two structure-based pharmacophore models from protein–ligand complex (3E33 and 3E37) obtained from the protein data bank. Molecular dynamics (MD) simulations were performed on the complexes, and different conformers of the same complex were generated. These conformers were undergone protein–ligand interaction fingerprint (PLIF) analysis, and the fingerprint bits have been used for structure-based pharmacophore model development. The PLIF results showed that Lys164, Tyr166, TrpB106 and TyrB361 are the major interacting residues in both the complexes. The RMSD and RMSF analyses on the MD-simulated systems showed that the absence of FPP in the complex 3E37 has significant effect in the conformational changes of the ligands. During this conformational change, some interactions between the protein and the ligands are lost, but regained after some simulations (after 2 ns). The structure-based pharmacophore models showed that the hydrophobic and acceptor contours are predominantly present in the models. The pharmacophore models were validated using reference compounds, which significantly identified as HITs with smaller RMSD values. The developed structure-based pharmacophore models are significant, and the methodology used in this study is novel from the existing methods (the original X-ray crystallographic coordination of the ligands is used for the model building). In our study, along with the original coordination of the ligand, different conformers of the same complex (protein–ligand) are used. It concluded that the developed methodology is significant for the virtual screening of novel molecules on different targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号