首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   5篇
  国内免费   1篇
儿科学   1篇
妇产科学   6篇
基础医学   21篇
口腔科学   6篇
临床医学   11篇
内科学   28篇
皮肤病学   1篇
神经病学   9篇
特种医学   1篇
外科学   6篇
预防医学   3篇
药学   2篇
肿瘤学   4篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   6篇
  2018年   10篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   1篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   7篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
排序方式: 共有99条查询结果,搜索用时 46 毫秒
1.
Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.Neuronal migration and maturation is a key step in brain development. Defects in this process have been implicated in many disorders, including autism (1) and schizophrenia (2). Thoroughly understanding how neural progenitor cell (NPC) migration is affected in neurodevelopmental disorders requires a means of dissecting the process using cells with genetic alterations matching those in patients. Existing in vitro assays of migration generally involve measurement of cell movement across a scratch or gap or through a membrane toward a chemoattractant in 2D culture systems. Although widely used, such assays may not accurately reveal in vivo differences, as neuronal migration is tightly regulated by physical and chemical cues in the extracellular matrix (ECM) that NPCs encounter as they migrate.In vitro 3D culture systems offer a solution to these limitations (37). Compared with 2D culture, a 3D arrangement allows neuronal cells to interact with many more cells (4); this similarity to the in vivo setting has been shown to lengthen viability, enhance survival, and allow formation of longer neurites and more dense networks in primary neurons in uniform matrices or aggregate culture (8, 9). Indeed, 3D culture systems have been used to study nerve regeneration, neuronal and glial development (1012), and amyloid-β and tau pathology (13). Thus, measuring neuronal migration through a soft 3D matrix would continue this trend toward using 3D systems to study neuronal development and pathology.We sought to develop a 3D assay to examine potential migration and neuronal maturation defects in Rett syndrome (RTT), a genetic neurodevelopmental disorder that affects 1 in 10,000 children in the United States and is caused by mutations in the X-linked methyl-CpG-binding protein-2 (MECP2) gene (14). Studies using induced pluripotent stem cells (iPSCs) from RTT patients in traditional 2D adherent culture have revealed reduced neurite outgrowth and synapse number, as well as altered calcium transients and spontaneous postsynaptic currents (1). However, 2D migration assays seemed unlikely to reveal inherent defects in this developmental process, which could be affected because MeCP2 regulates multiple developmental related genes (15). Migration of RTT iPSC-derived NPCs has not previously been studied.Using a previously unidentified 3D tissue culture system that allows creation of layered architectures, we studied differences in migration of MeCP2-mutant iPSC-derived versus control iPSC-derived NPCs. This approach revealed a defect in migration of MeCP2-mutant iPSC-derived NPCs induced by either astrocytes or neurons. Further, this 3D system accelerated maturation of neurons from human iPSC-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. With mature neurons derived from RTT patients and controls, we further confirmed defective neurite outgrowth and synaptogenesis in MeCP2-mutant neurons. Thus, this 3D system enables study of morphological features accessible in 2D system as well as previously unexamined phenotypes.  相似文献   
2.
3.
Oxidative stress plays a role in the pathophysiology of rheumatoid arthritis (RA). The aim of the present study was to verify the influence of metabolic syndrome (MetS) and disease-modifying antirheumatic drugs on nitrosative and oxidative biomarkers in patients with RA. A total of 177 patients with RA and 150 healthy volunteers participated in this study, which measured lipid hydroperoxides, advanced oxidation protein products (AOPP), nitric oxide metabolites (NOx), carbonyl protein, total radical-trapping antioxidant parameter (TRAP), uric acid (UA), and C-reactive protein (CRP). NOx and the NOx/TRAP ratio were significantly increased in RA, while no significant differences in lipid hydroperoxides, AOPP, UA, and TRAP levels were found between both groups. Treatment with leflunomide was associated with increased levels of carbonyl protein, and lowered levels in TRAP and UA, while the NOx/TRAP ratio further increased. NOx and the NOx/TRAP ratio were significantly higher in women than in men, while TRAP and UA were significantly lower in women. MetS was accompanied by increased AOPP and UA levels. RA was best predicted by increased NOx/TRAP ratio, CRP, and BMI. In conclusion, our data demonstrated that NOx and NOx/TRAP are strongly associated with RA physiopathology. Our findings suggest that inhibition of iNOS may become an interesting therapeutic approach for the treatment of RA. In addition, the presence of MetS and a decrease in levels of UA by leflunomide favor redox imbalance in RA patients. More studies are needed to evaluate the impact of antioxidant capacity reduction on RA progression.  相似文献   
4.
Nucleotide excision repair (NER) is one of the most versatile DNA repair mechanisms, ensuring the proper functioning and trustworthy transmission of genetic information in all living cells. The phenotypic consequences caused by NER defects in humans are autosomal recessive diseases such as xeroderma pigmentosum (XP). This syndrome is the most sun-sensitive disorder leading to a high frequency of skin cancer. The majority of patients with XP carry mutations in the XPA or XPC genes that encode proteins involved in recognition of DNA damage induced by UV light at the beginning of the NER process. Cells cultured from XPA and XPC patients are hypersensitive to UV light, as a result of malfunctioning DNA repair. So far there is no effective long-term treatment for these patients. Skin cancer prevention can only be achieved by strict avoidance of sunlight exposure or by the use of sunscreen agents. We have constructed recombinant adenoviruses carrying the XPA and XPC genes that were used to infect XP-A and XP-C immortalized and primary fibroblast cell lines. UV survival curves and unscheduled DNA synthesis confirmed complete phenotypic reversion in XP DNA repair deficient cells with no trace of cytotoxicity. Moreover, transgene expression is stable for at least 60 days after infection. This efficient adenovirus gene delivery approach may be an important tool to better understand XP deficiency and the causes of DNA damage induced skin cancer.  相似文献   
5.
6.
7.
Edema, parasthesias, and paresis affected 10 residents of an Indian community in Roraima state; three died. Mining with mercury occurs locally; caxirí, a traditional alcoholic drink, is consumed daily. We conducted a 1:2 unmatched case-control study; a case was an Indian from Uiramutã county (population of 9,127) who presented ≥ 1 of lower extremity edema, paresthesias, paresis, or weakness. Controls were asymptomatic Indians randomly selected from the population. We identified 90 cases (prevalence of 1%) and 180 controls; all were enrolled. Among cases, 79% were male, and the median age was 31 years. Ethnicity was Macuxí, and 49% had income. Cases had lower extremity edema (85%), upper extremity paresthesias (84%), and lower extremity weakness and pain (78%). Risk factors were male sex (odds ratio [OR] = 6.8; P < 0.001), age 31–40 years (OR = 5.63; P < 0.001), and consumption of caxirí (OR = 2.7; P < 0.003). Mercury exposure was not a risk. Thiamine therapy produced complete rapid clinical recovery in all cases, confirming the diagnosis of beriberi. We recommend surveillance, thiamine supplementation, and nutritional intervention.  相似文献   
8.
9.
This study investigated nitro-oxidative stress in patients with systemic lupus erythematosus (SLE) in association with disease activity, immune-inflammatory biomarkers, and adhesion molecules. Two-hundred-four patients with SLE and 256 healthy volunteers were enrolled in this case-control study, which measured nitro-oxidative stress biomarkers, including lipid peroxides (LOOH), advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), sulfhydryl (?SH) groups, products of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) oxidative degradation, and total radical-trapping anti-oxidant parameter (TRAP). Also measured were anti-nuclear antibodies (ANAs), antibodies against double-stranded DNA (dsDNA), plasma levels of diverse cytokines, C-reactive protein, and adhesion molecules. LOOH (p < 0.001) and AOPP (p < 0.001) were significantly higher, while TRAP was significantly lower (p < 0.001) in SLE patients than in controls. AOPP and LOOH were significantly and positively associated with SLE disease activity index (SLEDAI) scores, anti-nuclear antibodies, and antibodies against double-stranded DNA (anti-dsDNA) levels, while TRAP was significantly and inversely correlated with SLEDAI, ANA, and dsDNA antibody levels. There were significant positive associations between AOPP and LOOH and immune-inflammatory markers, indicating T helper (Th)-17 and Th1 bias and Th1 + Th17/Th2 ratio (p = 0.002 and p = 0.001, respectively). AOPP and LOOH (positively) and TRAP (inversely) were associated with adhesion molecule expression. A model predicting SLE was computed showing that, using LOOH, AOPP, NOx, adhesion molecules, and body mass index, 94.2% of the patients were correctly classified with a specificity of 91.5%. Increased nitro-oxidative stress takes part in the (auto)immune pathophysiology of SLE and modulates severity of illness and adhesion molecule expression.  相似文献   
10.
Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders sharing a core set of symptoms, including impaired social interaction, language deficits, and repetitive behaviors. While ASDs are highly heritable and demonstrate a clear genetic component, the cellular and molecular mechanisms driving ASD etiology remain undefined. The unavailability of live patient-specific neurons has contributed to the difficulty in studying ASD pathophysiology. The recent advent of induced pluripotent stem cells (iPSCs) has provided the ability to generate patient-specific human neurons from somatic cells. The iPSC field has quickly grown, as researchers have demonstrated the utility of this technology to model several diseases, especially neurologic disorders. Here, we review the current literature around using iPSCs to model ASDs, and discuss the notable findings, and the promise and limitations of this technology. The recent report of a nonsyndromic ASD iPSC model and several previous ASD models demonstrating similar results points to the ability of iPSC to reveal potential novel biomarkers and therapeutics.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-015-0354-x) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号