首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   9篇
耳鼻咽喉   1篇
基础医学   22篇
临床医学   2篇
内科学   5篇
神经病学   49篇
特种医学   6篇
外科学   1篇
眼科学   3篇
药学   15篇
肿瘤学   2篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   11篇
  2010年   1篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1985年   1篇
  1939年   1篇
排序方式: 共有106条查询结果,搜索用时 343 毫秒
1.
The mapping of 5-HT2 receptors in the brain using functional imaging techniques has been limited by a relative lack of selective radioligands. Iodine-123 labelled 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide (123I-5-I-R91150 or123I-R93274) is a new ligand for single-photon emission tomography (SPET), with high affinity and selectivity for 5-HT2A receptors. This study reports on preliminary123I-5-I-R91150 SPET, wholebody and blood distribution findings in five healthy human volunteers. Maximal brain uptake was approximately 2% of total body counts at 180 min post injection (p.i.). Dynamic SPET sequences were acquired with the brain-dedicated, single-slice multi-detector system SEM-810 over 200 min p.i. Early peak uptake (at 5 min p.i.) was seen in the cerebellum, a region free from 5HT2A receptors. In contrast, radioligand binding in the frontal cortex increased steadily over time, up to a peak at approximately 100–120 min p.i. Frontal cortex-cerebellum activity ratios reached values of 1.4, and remained stable from approximately 100 min p.i. onwards. Multi-slice SPET sequences showed a pattern of regional variation of binding compatible with the autoradiographic data on the distribution of 5-HT2A receptors in (cerebral cortex>striatum>cerebellum). These findings suggest that123I-5-I-R91150 may be used for the imaging of 5-HT2A receptors in the living human brain with SPET.  相似文献   
2.
3.
Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE−/− mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.

Atherosclerotic plaque rupture is the leading cause of myocardial infarction and stroke (1, 2). Studies assessing the correlation between calcium scores and cardiovascular events have demonstrated a predictive power that is superior to and independent from that of lipid scores (3, 4). Additionally, clinical imaging studies have revealed that the risk of plaque rupture is further heightened by the presence of small, “spotty” calcifications, or microcalcifications (5, 6), and cardiovascular risk is inversely correlated with the size of calcific deposits, quantified as a calcium density score (7). Indeed, computational modeling has demonstrated that, while large calcifications can reinforce the fibrous cap (8), microcalcifications (typically 5 to 15 μm in diameter) uniquely mediate an increase in mechanical stress of the relatively soft, collagen-rich fibrous cap (912).Histologic studies have revealed the presence of cell-derived vesicles within calcifying atherosclerotic lesions (1316). The inflammatory environment of the atherosclerotic lesion can induce vascular smooth muscle cells (vSMCs) to take on an osteochondrogenic phenotype and release calcifying extracellular vesicles (EVs) (1719). Macrophages have also been shown to release procalcifying vesicles (20, 21). Thus, just as bone formation is hypothesized to be an active, cell-driven process (22, 23), mediated by calcifying matrix vesicles, atheroma-associated calcification may similarly be initiated by the production and aggregation of calcifying EVs (11, 20, 2428).One proposed strategy for halting pathologic calcification has been the use of bisphosphonates (BiPs). BiPs are analogs of pyrophosphate (29), a naturally occurring compound derived in vivo from adenosine triphosphate (ATP) (30). Pyrophosphate binds to calcium phosphate and inhibits calcification via physicochemical mechanisms, namely, by blocking calcium and phosphate ions from forming crystals, preventing crystal aggregation, and preventing mineral transformation from amorphous calcium phosphate to hydroxyapatite (29). BiPs were identified as pyrophosphate analogs that, unlike pyrophosphate itself, resist enzymatic hydrolysis. A second, distinct property of BiPs is the ability to inhibit bone resorption via biological activity directed against osteoclasts following osteoclast endocytosis of the BiP molecule adsorbed to the surface of bone (29, 31). First-generation, or nonnitrogen-containing BiPs, are incorporated into nonhydrolyzable ATP analogs, and induce osteoclast apoptosis by limiting ATP-dependent enzymes. In contrast, nitrogen-containing BiPs inhibit farnesyl pyrophosphate synthetase and thereby induce osteoclast apoptosis (31).In vivo animal investigations have been performed to explore the potential for BiPs to inhibit cardiovascular calcification. Studies of first-generation BiPs revealed that the doses required to inhibit cardiovascular calcification also critically compromised normal bone mineralization (29, 32). However, newer, nitrogen-containing BiPs effectively arrested cardiovascular calcification in animal models at doses that did not compromise bone formation (32). Further, while it has been proposed that BiP treatment modifies cardiovascular calcification via its impact on bone-regulated circulating calcium and phosphate levels, a study in uremic rats demonstrated that BiP treatment inhibited medial aortic calcification with no significant change in plasma calcium and phosphate levels (33). The same study demonstrated that BiP treatment inhibited calcification of explanted rat aortas, indicating that BiPs can act directly on vascular tissue, independent of bone metabolism (33).Retrospective clinical data examining the effect of BiP therapy on cardiovascular calcification has demonstrated conflicting findings and intriguing paradoxes. In women with chronic kidney disease, BiP therapy decreased the mortality rate for patients without a prior history of cardiovascular disease (34), but for those patients with a history of prior cardiovascular events, BiP therapy was associated with an increased mortality rate (35). In another study, BiP therapy correlated with a lower rate of cardiovascular calcification in older patients (>65 y), but a greater rate in younger patients (<65 y) (36). These clinical findings motivated our study, in which we sought to further understand how BiP therapy impacts cardiovascular outcomes. Given that cardiovascular calcification, and especially the presence of microcalcification, is a strong and independent risk factor for adverse cardiac events, and BiPs are prescribed to modulate pathologies of mineralization, we hypothesize that BiPs modulate cardiovascular outcomes by altering the dynamics of cardiovascular calcification.EVs are smaller than the resolution limits of traditional microscopy techniques, hindering studies into the mechanisms of calcification nucleation and growth. We previously developed an in vitro collagen hydrogel platform that allowed the visualization of calcific mineral development mediated by EVs isolated from vSMCs (24). Using superresolution microscopy, confocal, and electron microscopy techniques, we showed that calcification requires the accumulation of EVs that aggregate and merge to build mineral. Collagen serves as a scaffold that promotes associations between EVs that spread into interfibrillar spaces. The resultant mineral that forms within the collagen hydrogel appears spectroscopically similar to microcalcifications in human tissues and allows the study of these structures on the time scale of 1 wk. In this study, we utilized this three-dimensional (3D) acellular platform to examine the direct effect of ibandronate, a nitrogen-containing BiP, on the EV-directed nucleation and growth of microcalcifications, a process that cannot be isolated from cellular and tissue-level mechanisms in a more complex, in vivo system. In parallel, we utilized a mouse model of atherosclerosis to assess the effect of ibandronate therapy on plaque-associated calcification, comparing mineral morphologies between the in vitro and in vivo samples. We hypothesize that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Understanding the EV-specific action of BiPs is imperative both to develop anticalcific therapeutics targeting EV mineralization and to understand one potential mechanism driving the cardiovascular impact of BiPs used in clinical settings.  相似文献   
4.
5.
6.
European Archives of Psychiatry and Clinical Neuroscience - Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention investigated for the treatment of...  相似文献   
7.
8.
Risperidone and remoxipride are recently introduced atypical antipsychotics, with clinical efficacy comparable to that of classical antipsychotics but lower propensity to induce extrapyramidal side effects (EPS). It is unclear whether these properties relate to weak dopamine D2 receptor blockade in vivo, as has been suggested for the archetypal atypical antipsychotic clozapine. We have used123I-IBZM single photon emission tomography (SPET) to characterize the patterns of striatal D2 receptor binding in vivo in DSMIII-R-diagnosed schizophrenic and schizo-affective patients treated with either risperidone (n=6) or remoxipride (n=4) but predominantly EPS free. These groups were compared to age- and BPRS- matched subjects from a previously reported D2 receptor binding database of patients treated with clozapine (n=10) and classical antipsychotics (n=10). Patients on risperidone and remoxipride had high levels of D2 receptor blockade, comparable to those of patients on classical antipsychotics, and significantly greater than those obtained with clozapine-treated patients (risperidone versus clozapine,P<0.005; remoxipride versus clozapine,P<0.025). These results suggest high levels of striatal D2 receptor occupancy in association with remoxipride and risperidone treatment and argue against modest D2 antagonism as the explanation for the low incidence of EPS associated with these drugs.  相似文献   
9.
The effects of noradrenaline and barium chloride were studied in the rat isolated vas deferens by perfusion of drugs either externally or through the lumen of the organ. Two effects were recorded simultaneously in the same preparation: (a) isometric contractions, due to the tension elicited by drugs on the external (longitudinal) smooth muscle layer and (b) pressure of internal perfusion, due to contractions of the internal (circular) smooth muscle layer. It was found with the longitudinal muscle that: (a) the potency, expressed as pD2 values, and the maximum response to noradrenaline were lower if the drug was perfused internally rather than externally; (b) the differences in maximum effects were pronounced on the prostatic half but were not observed on the epididymal half; (c) the maximum response obtained by internal perfusion could be increased by simultaneously adding the same dose of drug externally; (d) when barium chloride was used instead of noradrenaline no significant differences were observed on pD2 values, but differences on maximal responses were similar to that observed for noradrenaline; (e) it was possible to block completely the effect of internal or external noradrenaline on the longitudinal muscle, by perfusing external phenoxybenzamine. In these conditions the responses of the circular muscle to the agonist were only partly blocked. With the circular muscle, the differences related to internal and external perfusion were less marked than in the longitudinal muscle. However, unlike the latter, the circular layer was slightly more sensitive to drugs applied internally, in relation to pD2 values. It is suggested that the difference in pD2 values may be due to the removal of noradrenaline by the neuronal uptake process, whereas the difference in maximal effect is due to the inaccessibility of part of the receptor population when drugs are added through the lumen.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号