首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   8篇
儿科学   8篇
基础医学   50篇
口腔科学   6篇
临床医学   9篇
内科学   21篇
皮肤病学   1篇
神经病学   3篇
特种医学   4篇
外科学   8篇
预防医学   27篇
眼科学   6篇
药学   14篇
肿瘤学   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   7篇
  2012年   8篇
  2011年   11篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   3篇
  2005年   10篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   5篇
  1999年   1篇
  1998年   4篇
  1997年   11篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有160条查询结果,搜索用时 400 毫秒
1.
2.
3.
4.
5.
We have reported associations between human leukocyte antigen (HLA) homozygosity and low measles antibody levels after one dose of the measles, mumps, and rubella (MMR) vaccine. Here, we examined associations between HLA homozygosity and immune responses to MMR after two doses of vaccine. We examined associations between HLA homozygosity and measles antibody levels in a group of 178 children (cohort 1) as well as associations between homozygosity and antibody levels and lymphoproliferative responses to MMR in 346 children (cohort 2). In cohort 1, HLA homozygotes and heterozygotes had similar increases in measles antibody levels after a second dose of measles vaccine. In cohort 2, HLA homozygosity was not associated with measles immune measures after two doses of vaccine. Homozygosity at the DPB locus was associated with increased rubella antibody levels, and homozygosity at the class IA alleles was associated with lower mumps lymphoproliferative response. Homozygosity at increasing numbers of loci was also associated with lower mumps antibody levels and lymphoproliferative response. Therefore, two doses of the MMR vaccine appear to induce sufficient antibody levels and lymphoproliferative responses against measles and rubella, regardless of HLA homozygosity status. However, children who are HLA homozygous may be less protected against mumps compared with children who are heterozygous.  相似文献   
6.
The protective effect of measles immunization is due to humoral and cell-mediated immune responses. Little is known about cell-mediated immunity (CMI) to measles vaccine virus, the relative contribution of CD4(+) and CD8(+) T cells to variability in such immune responses, and the immunologic longevity of the CMI after measles vaccination in humans. Our study characterizes cellular immune response in subjects seronegative or highly seropositive for measles vaccine immunoglobulin G-specific antibody, aged 15 to 25 years, previously immunized with two doses of measles-mumps-rubella II vaccine. We evaluated the ability of subjects to respond to measles vaccine virus by measuring measles virus-specific T-cell proliferation. We examined the frequencies of measles virus-specific memory Th1 and Th2 cells by an ELISPOT assay. Our results demonstrated that proliferation of T cells in seronegative subjects was significantly lower than that for highly seropositive subjects (P = 0.003). Gamma interferon (IFN-gamma) secretion predominated over interleukin 4 (IL-4) secretion in response to measles virus in both groups. The median frequency of measles virus-reactive CD8(+) T cells secreting IFN-gamma was 0.09% in seronegative subjects and 0.43% in highly seropositive subjects (P = 0.04). The median frequency of CD4(+) T cells secreting IL-4 in response to measles virus was 0.03% in seronegative subjects and 0.09% in highly seropositive subjects (P = 0.005). These data confirm the presence of measles virus-specific cellular immune responses post-measles vaccine immunization in humans. The detection of measles virus-induced IFN-gamma and IL-4 production by ELISPOT can be used to identify measles virus-specific low-frequency memory T cells in subjects immunized with measles vaccine. These differences agree in directionality with the observed antibody response phenotype.  相似文献   
7.
Interindividual variations in vaccine-induced immune responses are in part due to host genetic polymorphisms in the human leukocyte antigen (HLA) and other gene families. This study examined associations between HLA genotypes, haplotypes, and homozygosity and protective antigen (PA)-specific cellular immune responses in healthy subjects following immunization with Anthrax Vaccine Adsorbed (AVA). While limited associations were observed between individual HLA alleles or haplotypes and variable lymphocyte proliferative (LP) responses to AVA, analyses of homozygosity supported the hypothesis of a “heterozygote advantage.” Individuals who were homozygous for any HLA locus demonstrated significantly lower PA-specific LP than subjects who were heterozygous at all eight loci (median stimulation indices [SI], 1.84 versus 2.95, P = 0.009). Similarly, we found that class I (HLA-A) and class II (HLA-DQA1 and HLA-DQB1) homozygosity was significantly associated with an overall decrease in LP compared with heterozygosity at those three loci. Specifically, individuals who were homozygous at these loci had significantly lower PA-specific LP than subjects heterozygous for HLA-A (median SI, 1.48 versus 2.13, P = 0.005), HLA-DQA1 (median SI, 1.75 versus 2.11, P = 0.007), and HLA-DQB1 (median SI, 1.48 versus 2.13, P = 0.002) loci, respectively. Finally, homozygosity at an increasing number (≥4) of HLA loci was significantly correlated with a reduction in LP response (P < 0.001) in a dose-dependent manner. Additional studies are needed to reproduce these findings and determine whether HLA-heterozygous individuals generate stronger cellular immune response to other virulence factors (Bacillus anthracis LF and EF) than HLA-homozygous subjects.  相似文献   
8.
9.
10.
Mehta  BA; Schmidt-Wolf  IG; Weissman  IL; Negrin  RS 《Blood》1995,86(9):3493-3499
Cytokine-induced killer (CIK) cells are non-major histocompatibility complex-restricted cytotoxic cells generated by incubation of peripheral blood lymphocytes with anti-CD3 monoclonal antibody (MoAb), interleukin-2 (IL-2), IL-1, and interferon-gamma. Cells with the greatest effector function in CIK cultures coexpress CD3 and CD56 surface molecules. CIK cell cytotoxicity can be blocked by MoAbs directed against the cell surface protein leukocyte function associated antigen-1 but not by anti-CD3 MoAbs. CIK cells undergo release of cytoplasmic cytotoxic granule contents to the extracellular space upon stimulation with anti-CD3 MoAbs or susceptible target cells. Maximal granule release was observed from the CD3+ CD56+ subset of effector cells. The cytoplasmic granule contents are lytic to target cells. Treatment of the effector cells with a cell-permeable analog of cyclic adenosine monophosphate (cAMP) inhibited anti-CD3 MoAb and target cell- induced degranulation and cytotoxicity of CIK cells. The immunosuppressive drugs cyclosporin (CsA) and FK506 inhibited anti-CD3- mediated degranulation, but did not affect cytotoxicity of CIK cells against tumor target cells. In addition, degranulation induced by target cells was unaffected by CsA and FK506. Our results indicate that two mechanisms of cytoplasmic granule release are operative in the CD3+ CD56+ killer cells; however, cytotoxicity proceeds through a cAMP- sensitive, CsA- and FK506-insensitive pathway triggered by yet-to-be- identified target cell surface molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号