首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12768篇
  免费   1602篇
  国内免费   682篇
耳鼻咽喉   22篇
儿科学   94篇
妇产科学   223篇
基础医学   1647篇
口腔科学   195篇
临床医学   783篇
内科学   2077篇
皮肤病学   164篇
神经病学   1474篇
特种医学   187篇
外国民族医学   1篇
外科学   987篇
综合类   1410篇
现状与发展   3篇
预防医学   777篇
眼科学   457篇
药学   2982篇
中国医学   930篇
肿瘤学   639篇
  2024年   47篇
  2023年   252篇
  2022年   259篇
  2021年   682篇
  2020年   647篇
  2019年   512篇
  2018年   548篇
  2017年   676篇
  2016年   755篇
  2015年   762篇
  2014年   828篇
  2013年   1436篇
  2012年   776篇
  2011年   731篇
  2010年   691篇
  2009年   668篇
  2008年   661篇
  2007年   624篇
  2006年   523篇
  2005年   435篇
  2004年   420篇
  2003年   326篇
  2002年   289篇
  2001年   218篇
  2000年   144篇
  1999年   153篇
  1998年   140篇
  1997年   124篇
  1996年   84篇
  1995年   87篇
  1994年   67篇
  1993年   58篇
  1992年   54篇
  1991年   42篇
  1990年   39篇
  1989年   25篇
  1988年   17篇
  1987年   19篇
  1986年   33篇
  1985年   30篇
  1984年   34篇
  1983年   28篇
  1982年   20篇
  1981年   20篇
  1980年   11篇
  1979年   9篇
  1978年   16篇
  1977年   11篇
  1976年   11篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
1.
Inappropriate use of acetaminophen (APAP) can lead to morbidity and mortality secondary to hepatic necrosis. Ginsenoside Rg1 is a major active ingredient in processed Panax ginseng, which is proved to elicit biological effects. We hypothesized the beneficial effect of Rg1 on APAP-mediated hepatotoxicity was through Nrf2/ARE pathway. The study was conducted in cells and mice, comparing the actions of Rg1. Rg1 significantly improved cell survival rates and promoted the expression of antioxidant proteins. Meanwhile, Rg1 reduced the excessive ROS and the occurrence of cell apoptosis, which were related to Nrf2/ARE pathway. Expression of Nrf2 has a certain cell specificity.

  相似文献   

2.
(+/?)3,4‐methylenedioxymethamphetamine (MDMA, “ecstasy”) is an abused psychostimulant that produces strong monoaminergic stimulation and whole‐body hyperthermia. MDMA‐induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP‐3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA‐induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature‐sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetramethyl‐1,4,7,10‐tetraacetate (DOTMA4?)). The MDMA‐induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA‐induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA‐induced warming across brain regions. MDMA‐induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as potential heat generation) may vary regionally, neuroprotection may require different cooling strategies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Background: Breast cancer is a multifactorial disease that affects women worldwide. Its progression is likely to be executed by oxidative stress wherein elevated levels of reactive oxygen and nitrogen species drive several breast cancer pathologies. Spider venom contains various pharmacological peptides which exhibit selective activity to abnormal expression of ion channels on cancer cell surface which can confer potent anti-cancer activities against this disease. Methods: Venom was extracted from a Philippine tarantula by electrostimulation and fractionated by reverse phase-high performance liquid chromatography (RP-HPLC). Venom fractions were collected and used for in vitro analyses such as cellular toxicity, morphological assessment, and oxidative stress levels. Results: The fractionation of crude spider venom generated several peaks which were predominantly detected spectrophotometrically and colorimetrically as peptides. Treatment of MCF-7 cell line of selected spider venom peptides induced production of several endogenous radicals such as hydroxyl radicals (•OH), nitric oxide radicals (•NO), superoxide anion radicals (•O2−) and lipid peroxides via malondialdehyde (MDA) reaction, which is comparable with the scavenging effects afforded by 400 µg/mL vitamin E and L-cysteine (p<0.05). Concomitantly, the free radicals produced decrease the mitochondrial membrane potential and metabolic activity as detected by rhodamine 123 and tetrazolium dye respectively (p>0.05). This is manifested by cytotoxicity in MCF-7 cells as seen by increase in membrane blebbing, cellular detachment, caspase activity and nuclear fragmentation. Conclusion: These data suggest that the Philippine tarantula venom contains peptide constituents exhibiting pro-oxidative and nitrosative-dependent cytotoxic activities against MCF-7 cells and can indicate mechanistic insights to further explore its potential application as prooxidants in cancer therapy.  相似文献   
4.
Pulmonary hypertension of the newborn (PHN) constitutes a critical condition with severe cardiovascular and neurological consequences. One of its main causes is hypoxia during gestation, and thus, it is a public health concern in populations living above 2500 m. Although some mechanisms are recognized, the pathophysiological facts that lead to PHN are not fully understood, which explains the lack of an effective treatment. Oxidative stress is one of the proposed mechanisms inducing pulmonary vascular dysfunction and PHN. Therefore, we assessed whether melatonin, a potent antioxidant, improves pulmonary vascular function. Twelve newborn sheep were gestated, born, and raised at 3600 meters. At 3 days old, lambs were catheterized and daily cardiovascular measurements were recorded. Lambs were divided into two groups, one received daily vehicle as control and another received daily melatonin (1 mg/kg/d), for 8 days. At 11 days old, lung tissue and small pulmonary arteries (SPA) were collected. Melatonin decreased pulmonary pressure and resistance for the first 3 days of treatment. Further, melatonin significantly improved the vasodilator function of SPA, enhancing the endothelial‐ and muscular‐dependent pathways. This was associated with an enhanced nitric oxide‐dependent and nitric oxide independent vasodilator components and with increased nitric oxide bioavailability in lung tissue. Further, melatonin reduced the pulmonary oxidative stress markers and increased enzymatic and nonenzymatic antioxidant capacity. Finally, these effects were associated with an increase of lumen diameter and a mild decrease in the wall of the pulmonary arteries. These outcomes support the use of melatonin as an adjuvant in the treatment for PHN.  相似文献   
5.
6.
Synthetic amorphous silica (SAS) in its nanosized form is now used in food applications although the potential risks for human health have not been evaluated. In this study, genotoxicity and oxidative DNA damage of two pyrogenic (NM‐202 and 203) and two precipitated (NM‐200 and ‐201) nanosized SAS were investigated in vivo in rats following oral exposure. Male Sprague Dawley rats were exposed to 5, 10, or 20 mg/kg b.w./day for three days by gavage. DNA strand breaks and oxidative DNA damage were investigated in seven tissues (blood, bone marrow from femur, liver, spleen, kidney, duodenum, and colon) with the alkaline and the (Fpg)‐modified comet assays, respectively. Concomitantly, chromosomal damage was investigated in bone marrow and in colon with the micronucleus assay. Additionally, malondialdehyde (MDA), a lipid peroxidation marker, was measured in plasma. When required, a histopathological examination was also conducted. The results showed neither obvious DNA strand breaks nor oxidative damage with the comet assay, irrespective of the dose and the organ investigated. Similarly, no increases in chromosome damage in bone marrow or lipid peroxidation in plasma were detected. However, although the response was not dose‐dependent, a weak increase in the percentage of micronucleated cells was observed in the colon of rats treated with the two pyrogenic SAS at the lowest dose (5 mg/kg b.w./day). Additional data are required to confirm this result, considering in particular, the role of agglomeration/aggregation of SAS NMs in their uptake by intestinal cells. Environ. Mol. Mutagen. 56:218–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
7.
8.
Triple-negative breast cancer (TNBCs) is a very aggressive and lethal form of breast cancer with no effective targeted therapy. Neoadjuvant chemotherapies and radiotherapy remains a mainstay of treatment with only 25–30% of TNBC patients responding. Thus, there is an unmet clinical need to develop novel therapeutic strategies for TNBCs. TNBC cells have increased intracellular oxidative stress and suppressed glutathione, a major antioxidant system, but still, are protected against higher oxidative stress. We screened a panel of antioxidant genes using the TCGA and METABRIC databases and found that expression of the thioredoxin pathway genes is significantly upregulated in TNBC patients compared to non-TNBC patients and is correlated with adverse survival outcomes. Treatment with auranofin (AF), an FDA-approved thioredoxin reductase inhibitor caused specific cell death and impaired the growth of TNBC cells grown as spheroids. Furthermore, AF treatment exerted a significant in vivo antitumor activity in multiple TNBC models including the syngeneic 4T1.2 model, MDA-MB-231 xenograft and patient-derived tumor xenograft by inhibiting thioredoxin redox activity. We, for the first time, showed that AF increased CD8+Ve T-cell tumor infiltration in vivo and upregulated immune checkpoint PD-L1 expression in an ERK1/2-MYC-dependent manner. Moreover, combination of AF with anti-PD-L1 antibody synergistically impaired the growth of 4T1.2 primary tumors. Our data provide a novel therapeutic strategy using AF in combination with anti-PD-L1 antibody that warrants further clinical investigation for TNBC patients.  相似文献   
9.
Emerging evidence suggests oxidative stress plays a role in the pathophysiology of both atopic dermatitis (AD) and psoriasis (PSO). We established in vitro models of AD and PSO skin, and characterized these models in regard to their oxidative stress state. Both AD and PSO model keratinocytes exhibited elevated reactive oxygen species (ROS) levels and accumulated more DNA damage than control cells after oxidative stress induced by 250 µmol/L H2O2. Elevated ROS levels and DNA damage accumulation could be inhibited by the NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI). Further, immunofluorescence analysis revealed the presence of both NOX1 and NOX4 in keratinocytes. By inhibiting NOX1, stress-related signalling cascades and elevated ROS levels could be abrogated, and survival of AD and PSO cells improved. Taken together, this study reveals that inhibition of NOX inhibition could abrogate elevated oxidative stress in a 2D model of AD and PSO.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号