首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  完全免费   5篇
  药学   24篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有24条查询结果,搜索用时 40 毫秒
1.
目的 研究以壳聚糖衍生物-异丁基壳聚糖为生物基质材料而制成的多功能(止血、镇痛、抗菌、促愈合)创面敷料的安全性。方法 采用皮肤刺激、皮内刺激、眼刺激法考察其刺激作用;利用皮肤斑贴试验观察其致敏作用;采用腹腔注射法观察其全身急性毒性作用。结果 异丁基壳聚糖多功能敷料无刺激、无致敏及无明显急性毒性。结论 异丁基壳聚糖多功能敷料具有良好的生物安全性。  相似文献
2.
The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze–thaw method. Response surface methodology with Box–Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze–thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12?hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze–thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.  相似文献
3.
Electrospun scaffold has been developed using biodegradable polymer and age old herbal drug for efficient wound healing patch with much better patient compliance. Positively charged smaller particle size (40?nm) of the drug has been prepared for greater penetration through epidermal barrier to enhance the wound healing activity of drug. Controlled drug release has been understood in terms of interactions between the components through spectroscopic techniques and calorimetric studies. In-vivo study using albino rats shows better wound healing efficiency of scaffold in terms of higher wound area contraction, minimum inflammation, faster epithelialization and vascularization. Cellular studies also endorse the scaffold as better biomaterial. Clinical studies also demonstrate fast healing of different type of wounds in presence of all three wound dressing materials with histological evidences. The complete biodegradation of the patch confirms its green nature of the developed patch.  相似文献
4.
Introduction: Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications.

Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015.

Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.  相似文献

5.
Wound dressings have been used to facilitate the process of wound healing. Prevention and/or control of infection in the wound and the surrounding areas has always been an important expectation for these wound dressings. To provide wound dressings that meet such expectations, extensive research efforts have been devoted to the development of wound dressings that are incorporated with various antibacterial agents via different methods. These antibacterial agents are usually expected to work effectively against a broad spectrum of microorganisms, while causing little toxicity or allergy to those who use the products. This article reviews the antibacterial activity and toxicity of the most frequently used antimicrobial agents used in current wound dressings.  相似文献
6.
The aims of this study were the development, characterization and bioevaluation of a novel biocompatible, resorbable and bio-active wound dressing prototype, based on anionic polymers (sodium alginate – AlgNa, carboximethylcellulose – CMC) and magnetic nanoparticles loaded with usnic acid (Fe3O4@UA). The antimicrobial activity was tested against Staphylococcus aureus grown in biofilms. The biocompatibility testing model included an endothelial cell line from human umbilical vein and human foetal progenitor cells derived from the amniotic fluid, that express a wide spectrum of surface molecules involved in different vascular functions and inflammatory response, and may be used as skin regenerative support. The obtained results demonstrated that CMC/Fe3O4@UA and AlgNa/Fe3O4@UA are exhibiting structural and functional properties that recommend them for further applications in the biomedical field. They could be used alone or coated with different bio-active compounds, such as Fe3O4@UA, for the development of novel, multifunctional porous materials used in tissues regeneration, as antimicrobial substances releasing devices, providing also a mechanical support for the eukaryotic cells adhesion, and exhibiting the advantage of low cytotoxicity on human progenitor cells. The great antimicrobial properties exhibited by the newly synthesized nano-bioactive coatings are recommending them as successful candidates for improving the implanted devices surfaces used in regenerative medicine.  相似文献
7.
We present natural polymeric composite films made of essential oils (EOs) dispersed in sodium alginate (NaAlg) matrix, with remarkable anti-microbial and anti-fungal properties. Namely, elicriso italic, chamomile blue, cinnamon, lavender, tea tree, peppermint, eucalyptus, lemongrass and lemon oils were encapsulated in the films as potential active substances. Glycerol was used to induce plasticity and surfactants were added to improve the dispersion of EOs in the NaAlg matrix. The topography, chemical composition, mechanical properties, and humidity resistance of the films are presented analytically. Antimicrobial tests were conducted on films containing different percentages of EOs against Escherichia coli bacteria and Candida albicans fungi, and the films were characterized as effective or not. Such diverse types of essential oil-fortified alginate films can find many applications mainly as disposable wound dressings but also in food packaging, medical device protection and disinfection, and indoor air quality improvement materials, to name a few.  相似文献
8.
Freshly prepared ZnO nanoparticles were incorporated into a chitosan solution in weight ratios ranging from 1:1 to 12:1. Starting from the ratio of 3:1 the chitosan solution was transformed into a gel with a high consistency, which incorporates 15 mL water for only 0.1 g solid substance. The powders obtained after drying the gel were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis (TG-DSC). The electronic (UV–vis), infrared (FTIR) and photoluminescence (PL) spectra were also recorded. ZnO particles were coated with gentamicin and incorporated into the chitosan matrix, to yield a ZnO/gentamicin–chitosan gel. The release rate of gentamicin was monitored photometrically. This ZnO/gentamicin–chitosan gel proved great antimicrobial properties, inhibiting Staphylococcus aureus and Pseudomonas aeruginosa growth in both planktonic and surface-attached conditions. The results indicate that the obtained composite can be used in cutaneous healing for developing improved wound dressings, which combine the antibacterial activity of all three components with the controlled release of the antibiotic. This wound dressing maintains a moist environment at the wound interface, providing a cooling sensation and soothing effect, while slowly releasing the antibiotic. The system is fully scalable to any other soluble drug, as the entire solution remains trapped in the ZnO–chitosan gel.  相似文献
9.
陈建云 《中国医药科学》2014,(4):146-147,150
目的分析糖尿病足伤口换药的临床护理方案,以遴选最佳换药材料。方法辅料组患者应用医用液体辅料辅以清创机进行换药,盐水组应用生理盐水辅以清创机进行换药。比照渗液的质量,统计伤口愈合耗时及换药次数,确定换药疗效。结果辅料组其创面渗液消失耗时、创面愈合耗时及换药次数均显著低于盐水组,差异有统计学意义(P〈0.05)。辅料组伤口愈合显效率为81.94%,显著高于盐水组的56.94%(P〈0.05),差异有统计学意义。结论应用液体敷料辅以清创机进行糖尿病足换药可大大提高换药效率,促进创面愈合,改善换药预后。  相似文献
10.
An original formulative/manufacturing approach for the development of a multi-composite wound dressing able to control the release of a water soluble API (lidocaine HCl) for several days was evaluated. The prepared multi-composite wound dressing is a microstructured spongy matrix, which embeds solid lipid microparticles (SLMs). The matrices were obtained by freeze drying of polyelectrolyte complexes made up two biopolymers: three different chitosan to alginate weight ratios (1:1, 3:1 and 1:3) were studied. The drug-loaded matrices were investigated as regards water uptake ability, swelling, drug loading, morphology and release profiles. SLMs were prepared at two different drug loadings (5% and 25%, w/w) by the spray congealing technology and were then incorporated in the spongy matrices. The characterization of the SLMs evidenced their spherical shape, mean dimensions lower than 20 μm, controlled release and the modification of the drug crystalline state. Comparing the release profiles of the SLMs-loaded sponges, the matrices with 1:3 chitosan/alginate ratio displayed a sustained release profile with the lower burst effect. Then hyaluronan and cysteine were embedded into the matrix to enhance the wound healing properties of the dressing. The final multi-composite platform was able to promote the growth of fibroblasts maintaining its prolonged release characteristic.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号