Introduction: Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges.Areas covered: This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters.Expert opinion: Genomics and metagenomics revealed nature’s remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives. 相似文献
Purpose: The profitable production of some important plant-based secondary metabolites (ginsenosides, saponins, camptothecin, shikonins etc.) in vitro by gamma irradiation is a current area of interest. We reviewed different types of secondary metabolites, their mode of synthesis and effect of γ-radiation on their yield for different plants, organs and in vitro cultures (callus, suspension, hairy root). Special effort has been made to review the biochemical mechanisms underlying the increase in secondary metabolites. A comparison of yield improvement with biotic and abiotic stresses was made.
Results: Phenolic compounds increase with γ-irradiation in whole plants/plant parts; psoralen content in the common herb babchi (Psoralea corylifolia) was increased as high as 32-fold with γ-irradiation of seeds at 20 kGy. The capsaicinoids, a phenolic compound increased about 10% with 10 kGy in paprika (Capsicum annum L.). The in vitro studies show all the three types of secondary metabolites are reported to increase with γ-irradiation. Stevioside, total phenolic and flavonoids content were slightly increased in 15?Gy-treated callus cultures of stevia (Stevia rebaudiana Bert.). In terpenoids, total saponin and ginsenosides content were increased 1.4- and 1.8-fold, respectively, with 100?Gy for wild ginseng (Panax ginseng Meyer) hairy root cultures. In alkaloids, camptothecin yield increased as high as 20-fold with 20?Gy in callus cultures of ghanera (Nothapodytes foetida). Shikonins increased up to 4-fold with 16?Gy in suspension cultures of purple gromwell (Lithospermum erythrorhizon S.). The enzymes associated with secondary metabolite production were increased with γ-irradiation of 20?Gy; namely, phenylalanine ammonia-lyase (PAL) for phenolics, chalcone synthase (CHS) for flavonoids, squalene synthase (SS), squalene epoxidase (SE) and oxidosqualene cyclases (OSC) for ginsenosides and PHB (p-hydroxylbenzoic acid) geranyl transferase for shikonins.
Conclusions: An increase in secondary metabolites in response to various biotic and abiotic stresses is compared with ionizing radiation. A ~5- to 20-fold increase is noted with ~20?Gy irradiation dose. It increases the yield of secondary metabolites by enhancing the activity of certain key biosynthetic enzymes. Identification of the optimum dose is the important step in the large-scale production of secondary metabolites at industrial level. 相似文献
Chronic pelvic pain syndrome (CPPS) can be triggered by a various types of gynecological, gastrointestinal, urological, and musculoskeletal disorders. Recently, the role of the central nervous system has proven to be an integral part on the development of any chronic pain syndrome, including CPPS. However, owing to the complex and heterogeneous etiology and pathophysiology of CPPS, the establishment of effective therapeutic interventions remains challenging for both physicians and patients. Nonetheless, recent studies have pointed that medicinal plants and their secondary metabolites can be effectively used in CPPS therapy, besides contributing to restore the patients' quality of life and potentiate the conventional CPPS management. In this sense, this review aims to provide a careful overview on the biomedical data for the use of medicinal plants use and their secondary metabolites on CPPS management. 相似文献