首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   9篇
  国内免费   14篇
临床医学   3篇
神经病学   1篇
综合类   6篇
药学   67篇
中国医学   21篇
  2023年   1篇
  2021年   9篇
  2020年   3篇
  2019年   12篇
  2018年   7篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1985年   1篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有98条查询结果,搜索用时 31 毫秒
1.
For performance assessment of the lipid-based drug delivery systems (LBDDSs), in vitro lipolysis is commonly applied because traditional dissolution tests do not reflect the complicated in vivo micellar formation and solubilization processes. Much of previous research on in vitro lipolysis has mostly focused on rank-ordering formulations for their predicted performances. In this study, we have incorporated in vitro lipolysis with microsomal stability to quantitatively predict the oral bioavailability of a lipophilic antineoplastic drug bexarotene (BEX) administered in LBDDS. Two types of LBDDS were applied: lipid solution and lipid suspension. The predicted oral bioavailability values of BEX from linking in vitro lipolysis with microsomal stability for lipid solution and lipid suspension were 34.2 ± 1.6% and 36.2 ± 2.6%, respectively, whereas the in vivo oral bioavailability of BEX was tested as 31.5 ± 13.4% and 31.4 ± 5.2%, respectively. The predicted oral bioavailability corresponded well with the oral bioavailability for both formulations, demonstrating that the combination of in vitro lipolysis and microsomal stability can quantitatively predict oral bioavailability of BEX. In vivo intestinal lymphatic uptake was also assessed for the formulations and resulted in <1% of the dose, which confirmed that liver microsomal stability was necessary for correct prediction of the bioavailability.  相似文献   
2.
3.
The objective of this study was to investigate the absorption behavior of chikusetsusaponin IVa (CHS‐IVa) in the rat intestine using single‐pass intestinal perfusion (SPIP) and to classify CHS‐IVa into the biopharmaceutics classification system (BCS). The equilibrium solubility of CHS‐IVa was determined by the shaker method. The absorption mechanism of CHS‐IVa in the intestine was studied by comparing the Peff of different concentrations of CHS‐IVa. The intestinal site dependence of CHS‐IVa absorption was studied by comparing the Peff of the same concentration of CHS‐IVa in different intestinal segments. The relationship between CHS‐IVa and intestinal efflux protein was studied by perfusion with an efflux protein inhibitor. The permeability of CHS‐IVa was investigated by comparing the Peff of CHS‐IVa and the reported value. The solubility of CHS‐IVa over the pH range 1.0–7.5 was 14.4 ± 0.29 to 16.9 ± 0.34 mg/ml. The Peff of CHS‐IVa in the duodenum was 1.76 × 10?3 to 2.00 × 10?3 cm/min. The Peff of CHS‐IVa in the jejunum was 1.26 × 10?3 to 1.39 × 10?3 cm/min. The Peff of CHS‐IVa in the ileum was 1.25 × 10?3 to 1.31 × 10?3 cm/min. The Peff of CHS‐IVa in the colon was 1.02 × 10?3 to 1.08 × 10?3 cm/min. There was no statistical difference of the Peff in the four segments at different CHS‐IVa concentrations. The Peff of CHS‐IVa (0.07, 0.7 and 7.0 mg/ml) were all notably smaller than the reported Peff (3.00 × 10?3 cm/min) in the jejunum. The Peff of CHS‐IVa was not influenced by verapamil (P‐gp inhibitor), indomethacin (MRP inhibitor) and pantoprazole (BCRP inhibitor). CHS‐IVa was classified as high solubility, low permeability and BCS III. The main absorptive tracts were the upper intestinal tracts and the rank order of intestinal permeability was duodenum > jejunum ≈ ileum > colon. The transport mechanism of CHS‐IVa in all intestinal segments might be primarily passive transport. CHS‐IVa was not a substrate of P‐gp, MRP and BCRP.  相似文献   
4.
5.
6.
Literature data pertaining to the physicochemical, pharmaceutical, and pharmacokinetic properties of ondansetron hydrochloride dihydrate are reviewed to arrive at a decision on whether a marketing authorization of an immediate release (IR) solid oral dosage form can be approved based on a Biopharmaceutics Classification System (BCS)-based biowaiver. Ondansetron, a 5HT3 receptor antagonist, is used at doses ranging from 4 mg to 24 mg in the management of nausea and vomiting associated with chemotherapy, radiotherapy, and postoperative treatment. It is a weak base and thus exhibits pH-dependent solubility. However, it is able to meet the criteria of “high solubility” as well as “high permeability” and can therefore be classified as a BCS class I drug. Furthermore, ondansetron hydrochloride 8 mg IR tablets (Zofran® 8 mg) and multiples thereof (16 mg = Zofran® 8 mg × 2 tablets and 24 mg = Zofran® 8 mg × 3 tablets) meet the criteria of “rapidly dissolving” in dissolution testing. Ondansetron hydrochloride has a wide therapeutic window and is well-tolerated after oral administration. Based on its favorable physicochemical properties, pharmacokinetic data and the minimal risks associated with an incorrect bioequivalence decision, the BCS-based biowaiver procedure can be recommended for ondansetron hydrochloride dihydrate IR tablets.  相似文献   
7.
王秀清  刘宇灵  林龙飞  邵金鑫  宋基正  李慧 《中草药》2018,49(12):2742-2748
生物药剂学分类系统(biopharmaceutics classification system,BCS)是一种根据药物的溶解性和渗透性高低,对药物进行科学分类的研究方法,多适用于单一成分的口服化学药品。相比大多数化学药,中药具有多成分复杂体系,因此BCS在中药研究中具有一定的局限性。基于BCS科学框架,国内学者陆续提出中药相关BCS。结合国内外相关文献,对中药相关BCS的发展、测定方法以及应用进行综述,以期为中药相关BCS的深入研究奠定基础。  相似文献   
8.
挥发性成分广泛存在于多科属植物中,具有芳香走窍、引药上行的特点和确切的疗效。分析研究国内外文献,探讨中药挥发性成分对其配伍药物口服吸收的促进作用及可能机制,对进一步研究挥发性成分对中药复方制剂生物药剂学的影响具有参考意义。  相似文献   
9.
The potential of hydrophilic aerogel formulations and liquisolid systems to improve the release of poorly soluble drugs was investigated using griseofulvin as model drug. The in vitro release rates of this drug formulated as directly compressed tablets containing crystalline griseofulvin were compared to aerogel tablets with the drug adsorbed onto hydrophilic silica aerogel and to liquisolid compacts containing the drug dissolved or suspended in PEG 300. Furthermore, the commonly used carrier and coating materials in liquisolid systems Avicel® and Aerosil® were replaced by Neusilin®, an amorphous magnesium aluminometasilicate with an extremely high specific surface area of 339 m2/g to improve the liquisolid approach.Both the liquisolid compacts containing the drug dissolved in PEG 300 and the aerogel tablets showed a considerably faster drug release than the directly compressed tablets. With liquisolid compacts containing the drug suspended in PEG 300, the release rate increased with rising fraction of dissolved drug in the liquid portion. It could be shown that Neusilin® with its sevenfold higher liquid adsorption capacity than the commonly used Avicel® and Aerosil® allows the production of liquisolid formulations with lower tablet weights.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号