首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11261篇
  免费   605篇
  国内免费   413篇
耳鼻咽喉   87篇
儿科学   108篇
妇产科学   58篇
基础医学   1896篇
口腔科学   184篇
临床医学   576篇
内科学   1980篇
皮肤病学   42篇
神经病学   1802篇
特种医学   178篇
外科学   607篇
综合类   1210篇
预防医学   368篇
眼科学   94篇
药学   2575篇
  3篇
中国医学   380篇
肿瘤学   131篇
  2024年   16篇
  2023年   91篇
  2022年   170篇
  2021年   295篇
  2020年   195篇
  2019年   200篇
  2018年   198篇
  2017年   226篇
  2016年   271篇
  2015年   321篇
  2014年   493篇
  2013年   694篇
  2012年   554篇
  2011年   648篇
  2010年   576篇
  2009年   577篇
  2008年   629篇
  2007年   639篇
  2006年   484篇
  2005年   483篇
  2004年   471篇
  2003年   448篇
  2002年   324篇
  2001年   301篇
  2000年   270篇
  1999年   259篇
  1998年   290篇
  1997年   301篇
  1996年   233篇
  1995年   184篇
  1994年   205篇
  1993年   167篇
  1992年   167篇
  1991年   152篇
  1990年   110篇
  1989年   122篇
  1988年   94篇
  1987年   99篇
  1986年   89篇
  1985年   68篇
  1984年   42篇
  1983年   36篇
  1982年   29篇
  1981年   19篇
  1980年   11篇
  1978年   4篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1969年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Objective Ligustrazine, also named as tetramethylpyrazine, is a compound purified from Ligusticum chuanxiong hort and has ever been testified to be a calcium antagonist. The present investigation was to determine the antinoci-ceptive effect of ligustrazine and, if any, the peripheral ionic mechanism involved. Methods Paw withdrawal Latency ( PWL) to noxious heating was measured in vivo and whole-cell patch recording was performed on small dorsal root ganglion (DRG) neurons. Results Intraplantar injection of ligustrazine (0.5 mg in 25μl) significantly prolonged the withdrawal latency of ipsilateral hindpaw to noxious heating in the rat. Ligustrazine not only reversibly inhibited high-voltage gated calcium current of dorsal root ganglion (DRG) neuron in dose-dependent manner with IC50 of 1.89 mmol/L, but also decreased tetrodotoxin (TTX) -resistant sodium current in relatively selective and dose-dependent manner with IC50 of 2.49 mmol/L. Conclusion The results suggested that ligustrazine could elevate the threshold of thermal nociception through inhibiting the high-voltage gated calcium current and TTX-resistant sodium current of DRG neuron in the rat.  相似文献   
2.
AClinicalStudyofReversingLeftVentricularHypertrophyinHypertensivePatientsbyAdalatZhangFumin(张馥敏)XuDi(许迪)YongYonghong(雍永宏)Chen...  相似文献   
3.
Severe myoclonic epilepsy (SMEI) or Dravet syndrome is caused by mutations of the SCN1A gene that encodes voltage-gated sodium channel alpha-1 subunit. Recently, we generated and characterized a knock-in (KI) mice with an SCN1A nonsense mutation that appeared in three independent SMEI patients. The SCN1A-KI mice well reproduced the SMEI disease phenotypes. Both homozygous and heterozygous knock-in mice developed epileptic seizures within the first postnatal month. In heterozygous knock-in mice, trains of evoked action potentials in inhibitory neurons exhibited pronounced spike amplitude decrement late in the burst but not in pyramidal neurons. We further showed that in wild-type mice the Nav1.1 protein is expressed dominantly in axons and moderately in somata of parbalbumin (PV) – positive inhibitory interneurons. Our immunohistochemical observations of the Nav1.1 are clearly distinct to the previous studies, and our findings has corrected the view of the Nav1.1 protein distribution. The data indicate that Nav1.1 plays critical roles in the spike output from PV interneurons and further, that the specifically altered function of these inhibitory circuits may contribute to epileptic seizures in the mice. These information should contribute to the understanding of molecular pathomechanism of SMEI and to develop its effective therapies.  相似文献   
4.
The tarantula venom peptides ProTx-I and ProTx-II inhibit voltage-gated sodium channels by shifting their voltage dependence of activation to a more positive potential, thus acting by a mechanism similar to that of potassium channel gating modifiers such as hanatoxin and VSTX1. ProTx-I and ProTx-II inhibit all sodium channel (Nav1) subtypes tested with similar potency and represent the first potent peptidyl inhibitors of TTX-resistant sodium channels. Like gating modifiers of potassium channels, ProTx-I and ProTx-II conform to the inhibitory cystine knot motif, and ProTx-II was demonstrated to bind to sodium channels in the closed state. Both toxins have been synthesized chemically, and ProTx-II, produced by recombinant means, has been used to map the interaction surface of the peptide with the Nav1.5 channel. In comparison, beta-scorpion toxins activate sodium channels by shifting the voltage dependence of activation to more negative potentials, and together these peptides represent valuable tools for exploring the gating mechanism of sodium channels.  相似文献   
5.
Stefan I McDonough 《Toxicon》2007,49(2):202-212
Some of the most potent and specific inhibitors of voltage-gated calcium channels are peptide toxins that inhibit channel function not by occlusion of the channel pore, but rather by interfering with the voltage dependence and kinetics of channel opening and closing. Many such gating modifier toxins conform to the inhibitor cystine knot structural family and have primary sequence or functional mechanism similar to toxins that target voltage-gated sodium or potassium channels. This review introduces known gating modifiers of calcium channels, discusses the selectivity, binding sites, and mechanism of the toxin-channel interaction, and reviews the usefulness of these toxins as research tools and as the basis for novel calcium channel pharmacology and therapeutics.  相似文献   
6.
The development of intrinsic, N-methyl-D-aspartate (NMDA) receptor-mediated voltage oscillations and their dependence on co-activation of 5-hydroxytryptamine (5HT) receptors was explored in motor neurons of late embryonic and early larval Xenopus laevis. Under tetrodotoxin, 100 μM NMDA elicited a membrane depolarization of around 20 mV, but did not lead to voltage oscillations. However, following the addition of 2–5 μM 5HT, oscillations were observed in 12% of embryonic and 70% of larval motor neurons. The voltage oscillations depended upon co-activation of NMDA and 5HT receptors since they were curtailed by selectively blocking NMDA receptors with D-2-amino-5-phosphonovaleric acid (APV) or by excluding Mg2+ from the experimental saline. 5HT applied in the absence of NMDA also failed to elicit oscillations. Oscillations could be induced by the non-selective 5HT1a receptor agonist, 5-carboxamidotryptamine (5CT) and both 5HT- and 5CT-induced oscillations were abolished by pindobind-5HT1, a selective 5HT1a receptor antagonist. To test whether 5HT enables voltage oscillations by modulating the voltage-dependent block of NMDA channels by Mg2+, membrane conductance was monitored under tetrodotoxin. Although 5HT caused membrane hyperpolarization of 4–8 mV, there was little detectable change in conductance. NMDA application caused an approximate 20 mV depolarization and an ‘apparent’ decrease in conductance, presumably due to the conductance pulse bringing the membrane into a voltage region where Mg2+ blocks the NMDA ionophore. 5HT further decreased conductance, which we propose is due to its enhancement of the voltage-dependent Mg2+ block. When the membrane potential was depolarized by ~20 mV via depolarizing current injection (to mimic the NMDA-induced depolarization), 5HT increased rather than decreased membrane conductance. Furthermore, 5HT did not affect the increase in membrane conductance following NMDA applications in zero Mg2+ saline. The results suggest that intrinsic, NMDA receptor-mediated voltage oscillations develop in a brief period after hatching, and that they depend upon the co-activation of 5HT and NMDA receptors. The enabling function of 5HT may involve the facilitation of the voltage-dependent block of the NMDA ionophore by Mg2+ through activation of receptors with 5HT1a-like pharmacology.  相似文献   
7.
1. In order to examine the mechanisms of cGMP-induced relaxation in airway smooth muscle, the effects of atrial natriuretic peptide (ANP) and 8-brom cGMP on muscle tone were studied by measuring isometric tension, while the effects on cytosolic Ca2+ concentrations were studied by measuring the spectra of fura-2 loaded in guinea-pig tracheal strips. 2. Atrial natriuretic peptide and 8-brom cGMP caused a concentration-dependent inhibition of spontaneous tone in the guinea-pig trachea. The relaxant effects of these agents on spontaneous tone were markedly suppressed in the presence of iberiotoxin (IbTX), a selective inhibitor of large-conductance Ca2+-activated K+ (BKca) channels. Iberiotoxin (30 nmol/L) markedly affected the maximal effect induced by ANP and 8-brom cGMP and augmented EC70 values for ANP and EC50values for 8-brom cGMP approximately 27- and 17-fold, respectively. The inhibitory effects of IbTX on relaxation induced by these agents were diminished in the presence of 1 μmol/L nifedipine, an antagonist of voltage-operated Ca2+channels (VOCC). 3. The inhibitory action of ANP and 8-brom cGMP on spontaneous tone was not affected by the presence of 10 μmol/L glibenclamide, an inhibitor of ATP-sensitive K+ channels, and 100 nmol/L apamin, an inhibitor of small-conductance Ca2+-activated K+ channels. When these agents were applied to tissues precontracted by high (40mmol/L) K+, the relaxant effects of these agents markedly diminished. 4. The extracellular Ca2+-dependent contraction was inhibited in the presence of 0.3 μmoI/L ANP or 0.1 mmol/L 8-brom cGMP. Concentration—response curves to extracellular Ca2+ (0.03—2.4 mmol/L) were markedly diminished by exposure to these agents. The maximal effect induced by extracellular Ca2+ was affected by these agents. 5. Atrial natriuretic peptide caused an inhibition of spontaneous tone accompanied by a reduction in the intracellular Ca2+ concentration. In the presence of IbTX, the elimination of both muscle tone and cytosolic Ca2+ by ANP was suppressed. 6. We conclude that ANP and 8-brom cGMP activate BKca channels and that the inhibition of Ca2+ influx through VOCC, mediated by BKca channel activation, may be involved in cGMP-dependent bronchodilation.  相似文献   
8.
M. Takada  T. Kono  S. T. Kitai 《Brain research》1992,590(1-2):311-315
Neurotoxic effects of flunarizine (Fz), a selective calcium channel blocker, on the nigrostriatal dopamine system was investigated. Systemic injections of Fz to mice resulted in a transient loss of tyrosine hydroxylase (TH) immunoreactive nigrostriatal neurons without cell loss. TH immunoreactivity in these neurons was greatly reduced as rapidly as one day after drug administration (regardless of dosage used) and thereafter recovered in both dose- and time-dependent manners. Such a novel neurotoxic action of Fz may constitute a morphological substrate for reversible drug-induced parkinsonian signs described in recent clinical case reports.  相似文献   
9.
Fast and slow twitch muscle fibers have distinct contractile properties. Here we determined that membrane excitability also varies with fiber type. Na+ currents (INA) were studied with the loose-patch voltage clamp technique on 29 histochemically classified human intercostal skeletal muscle fibers at the endplate border and <200 μm from the endplate (extrajunctional). Fast and slow twitch fibers showed slow inactivation of endplate border and extrajunctional INA and had increased INA at the endplate border compared to extrajunctional membrane. The voltage dependencies of INA were similar on the endplate border and extrajunctional membrane, which suggests thatboth regions have physiclogically similar channels. Fast twitch fibers had larger INA on the endplate border and extrajunctional membrane and manifest fast and slow inactivation of INA at more negative potentials than slow twitch fibers. For normal muscle, the differences between INA on fast and slow twitch fibers might: (1) enable fast twitch fibers to operate at high firing frequencies for brief periods; and (2) enable slow twitch fibers to operate at low firing frequencies for prolonged times. Disorders of skeletal membrane excitability, such as the periodic paralyses and myotonias, may impact fast and slow twitch fibers differently due to the distinctive Na+ channel properties of each fiber type. © 1993 John Wiley & Sons, Inc.  相似文献   
10.
Growth of cultured NlE-115 neuroblastoma cells in 1 μM A23187 for 2 days to elevate internal Ca reduced both membrane Na current and the transient, but not steady state, component of outward K current. Na channel mRNA abundance was reduced by an average value of 45% without effect on Kv3.1. Increases in internal Ca may therefore control excitability by independent regulation of Na and K channel mRNA abundance in neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号