首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   81篇
  国内免费   41篇
耳鼻咽喉   4篇
儿科学   2篇
妇产科学   10篇
基础医学   286篇
口腔科学   20篇
临床医学   57篇
内科学   249篇
皮肤病学   13篇
神经病学   289篇
特种医学   21篇
外国民族医学   1篇
外科学   49篇
综合类   89篇
预防医学   7篇
眼科学   52篇
药学   77篇
中国医学   18篇
肿瘤学   82篇
  2024年   1篇
  2023年   11篇
  2022年   10篇
  2021年   27篇
  2020年   29篇
  2019年   25篇
  2018年   20篇
  2017年   22篇
  2016年   33篇
  2015年   50篇
  2014年   54篇
  2013年   69篇
  2012年   75篇
  2011年   62篇
  2010年   71篇
  2009年   81篇
  2008年   85篇
  2007年   51篇
  2006年   54篇
  2005年   53篇
  2004年   61篇
  2003年   38篇
  2002年   49篇
  2001年   32篇
  2000年   35篇
  1999年   17篇
  1998年   20篇
  1997年   18篇
  1996年   16篇
  1995年   22篇
  1994年   19篇
  1993年   11篇
  1992年   13篇
  1991年   17篇
  1990年   13篇
  1989年   10篇
  1988年   12篇
  1987年   6篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
排序方式: 共有1326条查询结果,搜索用时 31 毫秒
1.
2.
3.
Diffuse gastric cancer (DGC) is a lethal malignancy lacking effective systemic therapy. Among the most provocative recent results in DGC has been that the alter of the cellular cytoskeleton and intercellular adhesion. CD2-associated protein (CD2AP) is one of the critical proteins regulating cytoskeleton assembly and intercellular adhesion. However, no study has investigated the expression and biological significance of CD2AP in gastric cancer (GC) to date. Therefore, the aim of our study was to explore if the expression of CD2AP is associated with any clinical features of GC and to elucidate the underlying mechanism. Immunohistochemistry of 620 patient tissue samples indicated that the expression of CD2AP is downregulated in DGC. Moreover, a low CD2AP level was indicative of poor patient prognosis. In vitro, forced expression of CD2AP caused a significant decrease in the migration and invasion of GC cells, whereas depletion of CD2AP had the opposite effect. Immunofluorescence analysis indicated that CD2AP promoted cellular adhesion and influenced cell cytoskeleton assembly via interaction with the F-actin capping protein CAPZA1. Overall, the upregulation of CD2AP could attenuate GC metastasis, suggesting CD2AP as a novel biomarker for the prognosis and treatment of patients with GC.  相似文献   
4.
Actin cytoskeleton is crucial to support spermatogenesis in the mammalian testis. However, the molecular mechanism(s) underlying changes of actin cytoskeletal organization in response to cellular events that take place across the seminiferous epithelium (e.g., self-renewal of spermatogonial stem cells, germ cell differentiation, meosis, spermiogenesis, spermiation) at specific stages of the epithelial cycle of spermatogenesis remain largely unexplored. This, at least in part, is due to the lack of suitable study models to identify the crucial regulatory proteins and to investigate how these proteins work in concert to support actin dynamics. Much of the information on the role of actin binding proteins in the literature, namely the actin bundling proteins, actin nucleation proteins and motor proteins, are either findings based on genetic models or morphological analyses. While this information is helpful to delineate the function of these proteins to support spermatogenesis, they are not helpful to identify the regulatory signaling proteins, the signaling pathways and the cascade of events to modulate actin cytoskeleton dynamics. Recent studies based on the use of toxicant models, both in vitro and in vivo, however, have bridged this gap by identifying putative regulatory and signaling proteins of actin cytoskeleton. Herein, we summarize and critically evaluate these findings. We also provide a hypothetical model by which actin cytoskeletal dynamics in Sertoli cells are regulated, which in turn supports spermatid transport across the seminiferous epithelium, and at the blood-testis barrier (BTB) during the epithelial cycle of spermatogenesis.  相似文献   
5.
Microglial polarization to the anti-inflammatory M2 phenotype is essential in resolving neuroinflammation, making it a promising therapeutic strategy for stroke intervention. The actin cytoskeleton is known to be important for the physiological functions of microglia, including migration and phagocytosis. Profilin 1 (PFN1), an actin-binding protein, is involved in the dynamic transformation and reorganization of actin. However, the role of PFN1 in microglial polarization and ischemia/reperfusion injury is unclear. The role of PFN1 on microglial polarization was examined in vitro in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGDR) and in vivo in male mice after transient middle cerebral artery occlusion (MCAO). Knockdown of PFN1 inhibited M1 microglial polarization and promoted M2 microglia polarization 48 hr after OGDR stimulation in BV2 cells and 7 days after MCAO-induced injury in male mice. RhoA/ROCK pathway was involved in the regulation of PFN1 during microglial polarization. Knockdown of PFN1 also significantly attenuated brain infarcts and edema, improved cerebral blood flow and neurological deficits in MCAO-injured mice. Inhibition of PFN1 effectively protected the brain against ischemia/reperfusion injuries by promoting M2 microglial polarization in vitro and in vivo.  相似文献   
6.
Abnormal cell migration and invasion underlie metastatic dissemination, one of the major challenges for cancer treatment. Melanoma is one of the deadliest and most aggressive forms of skin cancer due in part to its migratory and metastatic potential. Cancer cells use a variety of migratory strategies regulated by cytoskeletal remodelling. In particular, we discuss the importance of amoeboid invasive melanoma strategies, since they have been identified at the edge of human melanomas. We hypothesize that the presence of amoeboid melanoma cells will favour tumor progression since they are invasive and metastatic; they support immunosuppression; they harbour cancer stem cell properties and they are involved in therapy resistance. The Rho-ROCK-Myosin II pathway is key to maintain amoeboid melanoma invasion but this pathway is further regulated by pro-tumorigenic/pro-metastatic/pro-survival signalling pathways such as JAK-STAT3, TGFβ-SMAD, NF-κB, Wnt11/5-FDZ7 and BRAFV600E-MEK-ERK. These pathways support amoeboid behaviour and are actionable in the clinic. After melanoma wide surgical margin removal, we propose that possible remaining melanoma cells should be eradicated using anti-amoeboid therapies.  相似文献   
7.
Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix.Similar to eukaryotes, bacteria use a number of different cytoskeletal elements to ensure the proper temporal and spatial organization of their cellular machinery. Various studies proved the existence of bacterial homologs of eukaryotic cytoskeleton proteins including tubulin homologs such as FtsZ (1), actin homologs such as MreB (2), and intermediate filament (IF)-like proteins (3), which together have important roles in cell division, morphogenesis, polarity determination, and DNA segregation (47). In addition, several groups of polymer-forming proteins that are limited to the bacterial domain have been described (6).A recent addition to these bacteria-specific cytoskeletal proteins are the so-called bactofilins (8), a class of proteins that is widespread among most bacterial lineages and involved in a variety of different cellular processes. In the prosthecate α-proteobacterium Caulobacter crescentus, for instance, the two bactofilin paralogues BacA and BacB (Fig. 1A) assemble into membrane-associated polymeric sheets that are specifically localized to the cell pole carrying the stalk (8), a thin protrusion of the cell body involved in cell attachment and nutrient acquisition (9). These assemblies serve as spatial landmarks mediating the polar localization of a cell wall biosynthetic enzyme, PbpC, involved in stalk biogenesis (8) and organization (10). The δ-proteobacterial species Myxococcus xanthus, by contrast, possesses four bactofilin paralogues (BacMNOP) with, at least partly, distinct functions. BacM was shown to form cable- or rod-like structures that are critical for proper cell shape (8, 11). BacP, on the other hand, assembles into short filamentous structures that emanate from the cell poles, recruiting and thus controlling a small GTPase involved in type IV pili-dependent motility (12). As another well-characterized example, the ε-proteobacterium Helicobacter pylori, a human pathogen notorious for causing peptic ulcers, was shown to depend on a bactofilin homolog (CcmA) for maintaining its characteristic helical cell shape, a feature required for cells to efficiently colonize the gastric mucus (13). Moreover, in the γ-proteobacterium Proteus mirabilis, a homolog of the bactofilin CcmA has been implicated in cell shape and swarming motility (14).Open in a separate windowFig. 1.High-resolution ssNMR spectra of BacA filaments. (A) Selected bacterial bactofilins. The total number of amino acids is indicated in parentheses. (B) Amino acid sequence of C. crescentus BacA, together with a synthetic linker peptide (of 17 residues, in red) and a His6-tag (in blue) attached at the C terminus. The DUF583 domain is highlighted in magenta, and prolines are shown in green. (C) Carbon–carbon 2D correlation spectrum of uniformly [13C, 15N]-labeled BacA. The carbon–carbon magnetization transfer is achieved by PDSD. A short PDSD mixing time of 20 ms was applied, optimal for intraresidue transfer. In the spectrum, a trace through Ile60 is shown to illustrate sensitivity and line width.Bactofilins are usually small proteins (∼20 kDa) that are composed of a central conserved domain of unknown function (DUF583) and flanking N- and C-terminal regions of variable length and sequence. A characteristic of bactofilins is their ability to polymerize spontaneously in the absence of nucleotides or other cofactors (8). Native BacM protofilaments have been isolated from M. xanthus whole-cell lysates by sucrose density centrifugation (11). Moreover, polymers of C. crescentus BacA and BacB were obtained after heterologous expression in Escherichia coli, a species that lacks chromosomally encoded bactofilin homologs (8). Similarly, polymerization was observed for heterologously produced M. xanthus BacN, BacO, and BacP (8, 12). In all cases, the filamentous structures formed were biochemically inert and resistant to nonphysiological salt concentrations and pH values. This behavior is reminiscent of IFs, although there is no evolutionary relationship between these two groups of cytoskeletal elements (6). In particular, bactofilins lack predicted coiled-coil regions, which are a key feature of IF proteins.Up to now, the molecular structure of bactofilins and the mechanism(s) underlying their assembly have remained unknown. This is in large part due to the spontaneous formation, inertness, and insolubility of bactofilin polymers, which makes them difficult substrates for crystallography studies as well as conventional liquid-state NMR methods. We therefore resorted to the use of solid-state NMR (ssNMR) spectroscopy, a technique that has recently been adapted to obtain high-resolution structural information on insoluble and noncrystalline protein assemblies, including functional oligomeric assemblies (1517), disease-related amyloid fibrils (1821), and membrane proteins in a lipid bilayer environment (2226). In this study, we have applied state-of-the-art magic-angle spinning ssNMR spectroscopy in combination with a range of other biophysical methods to filaments of the C. crescentus bactofilin BacA (161 residues). We show that the DUF583 domain serves as a polymerization module that forms the rigid core of BacA filaments, whereas the terminal regions of the protein remain flexible. The core domain folds exclusively into β-sheets, but with an arrangement different from that typically found in amyloids. On the basis of the diffraction pattern of 2D crystalline assemblies observed by transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) measurements that yield a value for the mass per length (MPL), and the β-strand segments identified by ssNMR, we propose a β-helical arrangement of the BacA subunit. Finally, we performed a mutational analysis of conserved residues in the β-strand segments, which suggests that the folding and/or polymerization of bactofilins are mediated by an extensive and redundant network of hydrophobic interactions. These findings provide for the first time, to our knowledge, insight into the atomic structure of a bacteria-specific cytoskeletal filament and highlight ssNMR as a powerful technique for the analysis of cytoskeletal elements that are unamenable to standard structural biological approaches.  相似文献   
8.
9.
Mycoplasma pneumoniae is a bacterial pathogen of humans that is a major causative agent of chronic respiratory disease. M. pneumoniae infections often recur even after successful treatment of symptoms with antibiotics, and resistance to antibiotics is increasing worldwide, with nearly complete resistance in some places. Although biofilms often contribute to chronicity and resistance, M. pneumoniae biofilms remain poorly characterized. Scanning electron microscopy revealed that cells of wild-type (WT) M. pneumoniae strain M129 biofilms, as well as mutants II-3 and II-3R, in vitro became increasingly rounded as the biofilm towers matured over 5 days. The role of gliding motility in biofilm formation was addressed by analyzing differences in biofilm architecture in non-motile mutant II-3R and hypermotile mutant prpC-and by using time-lapse microcinematography to measure flux of cells around biofilm towers. There were no major differences in biofilm architecture between WT and motility mutants, with perhaps a slight tendency for the prpC- cells to spread outside towers during early stages of biofilm formation. Consistent with an insignificant role of motility in biofilm development, flux of cells near towers, which was low, was dominated by exit of cells. Immunofluorescence microscopy revealed that motility-associated attachment organelle (AO) proteins exhibited no discernable changes in localization to foci over time, but immunoblotting identified a decrease in steady-state levels of protein P200, which is required for normal gliding speed, as the WT culture aged. Non-adherent strain II-3 and non-motile strain II-3R also exhibited a steady decrease in P200 steady-state levels, suggesting that the decrease in P200 levels was not a response to changes in gliding behavior during maturation. We conclude that M. pneumoniae cells undergo morphological changes as biofilms mature, motility plays no major role in biofilm development, and P200 loss might be related to maturation of cells. This study helps to characterize potential therapeutic targets for M. pneumoniae infections.  相似文献   
10.
Aim: Glucocorticoid therapy has been used in childhood nephrotic syndrome since the 1950s, where the characteristic change is effacement of the actin‐rich foot process of glomerular podocytes. Recent studies have shown that glucocorticoids, in addition to their general immunosuppressive and anti‐inflammatory effects, have a direct effect on podocytes, regulate some apoptotic factors, and increase the stability of actin filaments. However, the precise mechanism(s) underlying the protective effects of glucocorticoids on podocytes remain unclear. It is known that adriamycin (ADR) can induce podocyte foot process effacement and trigger massive proteinuria in rodent models. However, few reports have examined the direct role of ADR in podocyte actin rearrangement in vitro. In this study, we investigated how ADR directly induced podocyte actin cytoskeleton rearrangement and further analyzed how dexamethasone prevented such injury. Methods: We used confocal microscopy to assess podocyte actin rearrangement. Western blot analysis and real‐time polymerase chain reaction were performed to measure the protein and mRNA levels of α‐actinin‐4. Results: We demonstrated that there was a time‐dependent ADR‐induced podocyte actin rearrangement with less than 12 h of ADR treatment in cultured podocytes. Dexamethasone could protect podocytes from ADR‐induced injury and also stabilize the expression of α‐actinin‐4. Conclusion: This study showed that dexamethasone had direct effects on podocytes: α‐actinin‐4 may be one of the potential target molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号