排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
《Research in developmental disabilities》2014,35(10):2403-2415
Williams syndrome (WS) is a neurogenetic disorder known for its “hypersocial” phenotype and a complex profile of anxieties. The anxieties are poorly understood specifically in relation to the social-emotional and cognitive profiles. To address this gap, we employed a Wechsler intelligence test, the Brief Symptom Inventory, Beck Anxiety Inventory, and Salk Institute Sociability Questionnaire, to (1) examine how anxiety symptoms distinguish individuals with WS from typically developing (TD) individuals; and (2) assess the associations between three key phenotypic features of WS: intellectual impairment, social-emotional functioning, and anxiety. The results highlighted intensified neurophysiological symptoms and subjective experiences of anxiety in WS. Moreover, whereas higher cognitive ability was positively associated with anxiety in WS, the opposite pattern characterized the TD individuals. This study provides novel insight into how the three core phenotypic features associate/dissociate in WS, specifically in terms of the contribution of cognitive and emotional functioning to anxiety symptoms. 相似文献
2.
3.
4.
5.
《Brain & development》2020,42(8):581-586
BackgroundDeletion of 13q13.3 is an extremely rare event.CaseWe report on a 25-month-old girl with neurodevelopmental disorder and intellectual disability. She had dysmorphic facies characterized by synophrys, long and narrow palpebral fissures; and a large, round face with small organs such as the eyes and mouth positioned near the center. She was hypotonic and had autism-like behaviors. Blood tests and brain MRI revealed no specific findings. However, G-banding chromosome analysis showed an apparently balanced translocation: 46,XX,t(7,13)(q11.23;q12.3). Both parents had normal karyotypes. Furthermore, her abnormal phenotype and chromosomal breakpoint lesion were suspected to be associated. Hence, we conducted array comparative genomic hybridization, which revealed a 3.2 Mb novel pathological microdeletion at 13q13.3 involving 17 genes including neurobeachin (NBEA), a neurodevelopment disorder gene. Furthermore, fluorescence in situ hybridization using probes adjacent to the microdeletion suggested a concomitant occurrence of the deletion and translocation as the structural basis of this rare genomic variant.ConclusionNBEA may have roles in her neurodevelopmental phenotypes, whereas other genes within the 13q13.3 microdeletion may contribute to her dysmorphic features. 相似文献
6.
《Genetics in medicine》2023,25(8):100885
PurposeMissense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability.MethodsBy international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro.ResultsIn accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well.ConclusionBy identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders. 相似文献
7.
《Genetics in medicine》2023,25(11):100922
PurposeRPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders.MethodsBy using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants.ResultsFour cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology.ConclusionOverall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder. 相似文献
8.
《European journal of medical genetics》2023,66(8):104804
DExH-box helicases are involved in unwinding of RNA and DNA. Among the 16 DExH-box genes, monoallelic variants of DHX16, DHX30, DHX34, and DHX37 are known to be associated with neurodevelopmental disorders. In particular, DHX30 is well established as a causative gene for neurodevelopmental disorders. Germline variants of DHX9, the closest homolog of DHX30, have not been reported until now as being associated with congenital disorders in humans, except that one de novo heterozygous variant, p.(Arg1052Gln) of the gene was identified during comprehensive screening in a patient with autism; unfortunately, the phenotypic details of this individual are unknown. Herein, we report a patients with a heterozygous de novo missense variant, p.(Gly414Arg) of DHX9 who presented with a short stature, intellectual disability, and ventricular non-compaction cardiomyopathy. The variant was located in the glycine codon of the ATP-binding site, G-C-G-K-T. To assess the pathogenicity of these variants, we generated transgenic Drosophila lines expressing human wild-type and mutant DHX9 proteins: 1) the mutant proteins showed aberrant localization both in the nucleus and the cytoplasm; 2) ectopic expression of wild-type protein in the visual system led to the rough eye phenotype, whereas expression of the mutant proteins had minimal effect; 3) overexpression of the wild-type protein in the retina led to a reduction in axonal numbers, whereas expression of the mutant proteins had a less pronounced effect. Furthermore, in a gene-editing experiment of Dhx9 G416 to R416, corresponding to p.(Gly414Arg) in humans, heterozygous mice showed a reduced body size, reduced emotionality, and cardiac conduction abnormality. In conclusion, we established that heterozygosity for a loss-of-function variant of DHX9 can lead to a new neurodevelopmental disorder. 相似文献
9.
10.