首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  预防医学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
目的 建立基于气象因素的上海市感染性腹泻逐H发病例数BP人工神经网络预测模型。方法 收集上海市2005-2008年感染性腹泻逐日发病例数与同期气象资料包括气温、相对湿度、降雨量、气压、日照时数、风速,通过SPearman相关分析选出与感染性腹泻相关的气象因素,用主成分分析(PCA)去除气象因素间的共线性影响。利用MatLabR2012b软件的神经网络工具箱建立感染性腹泻日发病例数的BP神经网络预测模型,并对拟合效果、外推预测能力和等级预报效果进行评价。结果 SPearman相关性分析显示,日感染性腹泻与前两天的日最高气温、最低气温、平均气温、最低相对湿度、平均相对湿度呈正相关(PP<0.01)。输入PCA提取的4个气象主成分构建BP神经网络预测模型,训练和预测样本平均绝对误差、均方根误差、相关系数、决定系数分别为4.7811、6.8921、0.7918、0.8418和5.8163、7.8062、0。7202、0.8180。模型预测值对2008年实际发病数的年平均误差率为5,30%,对感染性腹泻的等级预报正确率为95.63%+H26。结论 温度和气压对感染性腹泻日发病例数影响较大。BP神经网络模型的拟合及预测误差较小,预报正确率较高,预报效果理想。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号