首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
内科学   2篇
特种医学   1篇
  2021年   1篇
  2010年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 546 毫秒
1
1.
Tornadoes cause damage, injury, and death when intense winds impact structures. Quantifying the strength and extent of such winds is critical to characterizing tornado hazards. Ratings of intensity and size are based nearly entirely on postevent damage surveys [R. Edwards et al., Bull. Am. Meteorol. Soc. 94, 641–653 (2013)]. It has long been suspected that these suffer low bias [C. A. Doswell, D. W. Burgess, Mon. Weather Rev. 116, 495–501 (1988)]. Here, using mapping of low-level tornado winds in 120 tornadoes, we prove that supercell tornadoes are typically much stronger and wider than damage surveys indicate. Our results permit an accurate assessment of the distribution of tornado intensities and sizes and tornado wind hazards, based on actual wind-speed observations, and meaningful comparisons of the distribution of tornado intensities and sizes with theoretical predictions. We analyze data from Doppler On Wheels (DOW) radar measurements of 120 tornadoes at the time of peak measured intensity. In striking contrast to conventional damage-based climatologies, median tornado peak wind speeds are ∼60 m⋅s−1, capable of causing significant, Enhanced Fujita Scale (EF)-2 to -3, damage, and 20% are capable of the most intense EF-4/EF-5 damage. National Weather Service (NWS) EF/wind speed ratings are 1.2 to 1.5 categories (∼20 m⋅s−1) lower than DOW observations for tornadoes documented by both the NWS and DOWs. Median tornado diameter is 250 to 500 m, with 10 to 15% >1 km. Wind engineering tornado-hazard-model predictions and building wind resistance standards may require upward adjustment due to the increased wind-damage risk documented here.

Tornadoes cause direct harm to people, infrastructure, and communities (1). Quantifying tornado risk requires accurate knowledge of their wind speeds and the size of the areas at risk from these intense winds. However, since direct measurements of tornado winds are rare, tornado intensity and size are nearly always inferred indirectly from postevent damage surveys applying the Fujita (F) or Enhanced Fujita (EF) scales (25) to infer maximum wind speeds. Statistics concerning tornado frequency, intensity, and size are derived from these surveys. However, because most tornadoes do not damage well-engineered structures, from which the most intense wind speeds can be inferred, and many occur in primarily rural areas, damage-based tornado wind speed and size estimations are likely severely low biased (611). A limited climatology (12), using Doppler On Wheels (DOW) radar data (1315), suggested that tornadoes may be larger and more intense than indicated by these surveys. In-situ observations of wind speeds reliably demonstrable to be inside the radius of maximum winds of tornadoes are very rare (16, 17) and inadequate for deriving a statistically meaningful climatology. It is no exaggeration to state that, until now, statistics concerning even the most basic characteristics of tornadoes, including intensity and size, could not be quantified with confidence.  相似文献   
2.
3.
Slow contrast infusion was recently proposed for contrast‐enhanced whole‐heart coronary MR angiography. Current protocols use Cartesian k‐space sampling with empiric acquisition delays, potentially resulting in suboptimal coronary artery delineation and image artifacts if there is a timing error. This study aimed to investigate the feasibility of using time‐resolved three‐dimensional projection reconstruction for whole‐heart coronary MR angiography. With this method, data acquisition was started simultaneously with contrast injection. Sequential time frames were reconstructed by employing a sliding window scheme with temporal tornado filtering. Additionally, a self‐timing method was developed to monitor contrast enhancement during a scan and automatically determine the peak enhancement time around which optimal temporal frames were reconstructed. Our preliminary results on six healthy volunteers showed that by using time‐resolved three‐dimensional projection reconstruction, the contrast kinetics of the coronary artery system throughout a scan could be retrospectively resolved and assessed. In addition, the blood signal dynamics predicted using self‐timing was closely correlated to the true dynamics in time‐resolved reconstruction. This approach is useful for optimizing delineation of each coronary artery and minimizing image artifacts for contrast‐enhanced whole‐heart MRA. Magn Reson Med 63:970–978, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号