首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
基础医学   2篇
临床医学   1篇
内科学   7篇
综合类   4篇
药学   27篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   13篇
  2012年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
卢安  王向宇  闫仪  王坚成 《药学学报》2022,(1):109-121+277
肿瘤作为全球危害人类健康的重大疾病之一,亟需寻找更加安全高效的治疗方案。核糖核酸(ribonucleic acid, RNA)药物的基因疗法可以调节肿瘤相关基因的表达,已在临床前和临床试验中展示出良好的抗肿瘤治疗潜力。基于肿瘤组织在pH、特异性酶浓度或氧化还原梯度变化等微环境信号特征与正常组织存在差异性,各类微环境响应型纳米载体正在被研究开发用于递送RNA药物,实现对肿瘤组织与细胞的靶向递送,提高RNA药物的抗肿瘤疗效并且降低不良反应。本文综述了肿瘤微环境的病生理特征以及各类肿瘤微环境响应型载体策略,旨在为设计安全高效的RNA药物肿瘤靶向递送系统提供参考。  相似文献   
2.
纳米技术的进步对基于纳米载体构建的给药系统的发展产生了革命性影响。由于癌症机制的复杂性,单一药物治疗并不能取得满意的疗效,通过纳米载体同时负载作用机制不同的药物可以从多个通路杀伤癌细胞。除了化疗药物联用外,将药物与基因、抗体、蛋白或siRNA联用已成为近来的研究热点。利用肿瘤微环境内源性的刺激例如低pH值、强还原性、过表达的酶等,以及外部刺激如磁场、光、热、超声等,设计具有相应刺激响应性的纳米载体可以实现药物在病灶部位快速释放。本文将重点介绍刺激响应性纳米载体用于共同递送小分子化疗药物或生物分子的研究进展。  相似文献   
3.
Xiaoyun Qiu  Shuwen Hu 《Materials》2013,6(3):738-781
Cellulose is the most abundant biomass material in nature, and possesses some promising properties, such as mechanical robustness, hydrophilicity, biocompatibility, and biodegradability. Thus, cellulose has been widely applied in many fields. “Smart” materials based on cellulose have great advantages—especially their intelligent behaviors in reaction to environmental stimuli—and they can be applied to many circumstances, especially as biomaterials. This review aims to present the developments of “smart” materials based on cellulose in the last decade, including the preparations, properties, and applications of these materials. The preparations of “smart” materials based on cellulose by chemical modifications and physical incorporating/blending were reviewed. The responsiveness to pH, temperature, light, electricity, magnetic fields, and mechanical forces, etc. of these “smart” materials in their different forms such as copolymers, nanoparticles, gels, and membranes were also reviewed, and the applications as drug delivery systems, hydrogels, electronic active papers, sensors, shape memory materials and smart membranes, etc. were also described in this review.  相似文献   
4.
Oligopeptides, a type of short peptide, which consist of 2–20 amino acids, exhibit a variety of biological functions in drug delivery systems, such as specific targeting, cell penetration, self-assembled capacity and responsiveness to the environment. In this review, we aim to highlight the importance of functional oligopeptides for nanomedical applications and put forward the views on the future development direction of oligopeptide medicines. Oligopeptides have gained wide attentions due to their inherent properties, but the lack of understanding the mechanisms of in vivo transport behavior is the biggest problem and challenge at the present stage. Therefore, it is an important direction for the future clinical research to systematically evaluate its metabolic behavior and safety in vivo.  相似文献   
5.
Hydrogels, three-dimensional (3D) polymer networks, present unique properties, like biocompatibility, biodegradability, tunable mechanical properties, sensitivity to various stimuli, the capacity to encapsulate different therapeutic agents, and the ability of controlled release of the drugs. All these characteristics make hydrogels important candidates for diverse biomedical applications, one of them being drug delivery. The recent achievements of hydrogels as safe transport systems, with desired therapeutic effects and with minimum side effects, brought outstanding improvements in this area. Moreover, results from the utilization of hydrogels as target therapy strategies obtained in clinical trials are very encouraging for future applications. In this regard, the review summarizes the general concepts related to the types of hydrogel delivery systems, their properties, the main release mechanisms, and the administration pathways at different levels (oral, dermal, ocular, nasal, gastrointestinal tract, vaginal, and cancer therapy). After a general presentation, the review is focused on recent advances in the design, preparation and applications of innovative cellulose-based hydrogels in controlled drug delivery.  相似文献   
6.
Importance of the field: The incorporation of stimuli-responsive properties into nanostructured systems has recently attracted significant attention in the research of intracellular drug/gene delivery. In particular, numerous surface-functionalized, end-capped mesoporous silica nanoparticle (MSN) materials have been designed as efficient stimuli-responsive controlled release systems with the advantageous ‘zero premature release’ property.

Areas covered in this review: Herein, the most recent research progress on the design of biocompatible, capped MSN materials for stimuli-responsive intracellular controlled release of therapeutics and genes is reviewed. A series of hard and soft caps for drug encapsulation and a variety of internal and external stimuli for controlled release of different cargoes are summarized. Recent investigations on the biocompatibility of MSN both in vitro and in vivo are also discussed.

What the reader will gain: The reader will gain an understanding of the challenges for the future exploration of biocompatible stimuli-responsive MSN devices.

Take home message: With a better understanding of the unique features of capped MSN and its behaviors in biological environment, these multifunctional materials will find a wide variety of applications in the field of drug/gene delivery.  相似文献   
7.
8.
杨雨琦  巩飞  柏上  程亮 《药学学报》2021,(2):465-475
肿瘤在生长与恶化的过程中,伴随着具有乏氧、低pH值、氧化应激增加、高浓度谷胱甘肽(glutathione,GSH)及过表达的酶等一系列异常特征的微环境。这些因素虽然影响或限制了肿瘤的治疗,但同时为针对癌症的诊断与新型治疗策略提供了可能的途径。近年来,根据肿瘤微环境(tumor microenvironment,TME)特性,不同响应型的纳米制剂不断地被开发并初步应用于癌症诊疗中。本文首先简要介绍TME的典型特征;其次,详细总结相应乏氧响应型、pH响应型、氧化还原响应型、酶响应型、双重及多重响应型纳米制剂的设计原理和研究进展;最后,对TME响应型纳米制剂存在的挑战与未来发展趋势进行一定的展望。  相似文献   
9.
10.
Introduction: Hydrogel-based electrochemical immunoassays exhibit a large surface-to-volume ratio, excellent biocompatibility, unique stimuli-responsive behavior, high permeability and hydrophilicity and, thus, have shown great potential in the sensitive and accurate detection of tumor markers. Electrochemical immunosensing techniques for tumor markers based on hydrogels have greatly progressed in recent years.

Areas covered: In this review, the authors describe the recent advances of hydrogel-based electrochemical immunosensing interface of tumor markers based on the different functions of hydrogels including conductive, catalytic, redox, stimuli-responsive and antifouling hydrogels.

Expert commentary: Hydrogels have been successfully employed in electrochemical immunoassay of tumor markers, which is accountable to their unique properties. For further exploitation of hydrogel-based electrochemical biosensors, more variety of hydrogels need be fabricated with improved functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号