首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  完全免费   5篇
  综合类   15篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1999年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
模糊C-均值聚类(FCM)算法是数据预处理中常用的一种方法,但用这种方法进行数据聚类,各类别边界信息间往往存在干扰,模型精度不能得到很好改善。本文采用一种改进的线性判别分析(LDA)方法,用于扩大样本类别间的距离,使聚类更为精确。将FCM算法与改进的LDA算法结合提取样本特征,然后通过多模型融入到SVM算法中。通过对双酚A软测量建模的仿真研究表明该方法具有较好的效果。  相似文献
2.
根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种 新的加权方法应用到最小二乘支持向量机( LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向 量机(Weighted Least Square Support Vector Machine, WLS-SVM))参数的选择基于LS-SVM的最优参数,根据模型训练误差对参 数进行二次寻优,进一步提高模型精度。利用测试函数验证了改进方法,对提高模型精度有明显效果;并将改进方法应用到实际生 产装置的炉温软测量系统中,也取得了满意的应用效果。  相似文献
3.
综合同伦方法与Levenberg-Marquardt(LM)优化方法,提出了一种新型非线性同伦LM神经网络学习算法以改善现有神经网络学习算法的学习效率,分析了不同类型的过渡函数对神经网络泛化性能的影响.该算法具有稳定性强、收敛性能好的特点.结合工业过程实际要求,将提出的改进算法用于丙烯腈收率神经网络软测量建模并与几种常见建模方法比较,结果表明:基于改进算法的软测量模型具有更高的测量精度和更好的泛化性能,满足现场测量要求.  相似文献
4.
在分析基本微粒群优化算法(PSO)和支持向量机(SVM)原理的基础上,采用带有末位淘汰机制的微粒群优化算法优化支持向量机的参数,建立了延迟焦化装置粗汽油干点软测量的微粒群支持向量机模型.该方法利用支持向量机结构风险最小化原则和PSO算法快速全局优化的特点,用于软测量建模.仿真实验表明:所建模型的泛化性能较好,模型具有较高的精度.  相似文献
5.
提出了一种改进的粒子群算法,很好地解决了基本粒子群算法中易陷入局部最优的缺点。通过比较和分析几个标准测试函数的计算结果,改进的粒子群算法的优良性得到充分的证明。改进的粒子群算法被用于优化神经网络的结构和参数,结果表明:不但网络的结构得到控制,而且泛化性能有了较大的提高。同时,算法在优化神经网络上的有效性也在4-CBA含量的软测量建模中得到了很好的证实。  相似文献
6.
针对混沌优化方法对复杂优化问题效率偏低的不足,将混沌变量分为不同载波方式的两组,提出两组异向载波混沌优化方法。标准函数测试结果表明:两组异向载波混沌优化方法比基本混沌优化方法具有更好的优化性能。将两组异向载波混沌优化方法应用于催化裂化装置干气中C3含量软测量建模,通过与实际工业数锯的对比,结果表明基于两组异向载波混沌RBF网络的C3含量软测量模型具有高的精度和好的性能。  相似文献
7.
在分析基本微粒群优化算法的基础上,引进分群思想,提出了一种动态分群的微粒群优化算法(DPSO)。根据适应值的大小将微粒群分成两个或多个分群,然后,每个分群采用不同的策略分别搜索,得到输出最优值。将动态分群的微粒群优化算法用于一些常用测试函数的优化问题,实例计算表明:DPSO具有较强的全局寻优能力。将DPSO用于延迟焦化装置粗汽油干点软测量,所建模型的泛化性较好,模型具有较高的精度。  相似文献
8.
提出了一种利用A lopex算法改进的粒子群优化算法,并将其应用于神经网络的建模中。改进的粒子群优化算法改善了粒子群优化算法摆脱局部极小点的能力,对典型函数的测试和基于神经网络的软测量建模表明:改进算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效地避免早熟收敛问题。  相似文献
9.
提出一种两群替代微粒群优化算法(TSSPSO),并对算法参数进行分析和对算法方程进行修正。该方法将微粒分成飞行方向不同的两分群,其中一分群微粒朝着最优微粒飞行,另一分群微粒朝着相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。搜索时,每一次迭代均以一定的替代率用一分群中若干优势微粒取代另一分群中相同数目的劣势微粒。对4种常用函数的优化问题进行测试并进行比较,结果表明:两群替代微粒群优化算法比基本微粒群优化算法更容易找到全局最优解,优化效率和优化性能明显提高。将两群替代微粒群优化算法用于常压塔汽油干点软测量,建立基于两群替代微粒群优化算法的汽油干点神经网络软测量模型,通过与实际工业数据的比较,表明基于两群替代微粒群神经网络的软测量模型精度高、性能好。  相似文献
10.
提出了基于核函数主元分析(PCA)方法提取变量的特征信息以有效处理非线性数据,并在此基础上进行软测量建模的方法。利用该方法建立了工业萘初馏塔酚油含萘量软测量模型,工业应用结果表明了该方法的有效性和优越性。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号