首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1483篇
  免费   154篇
  国内免费   70篇
儿科学   4篇
妇产科学   1篇
基础医学   204篇
口腔科学   8篇
临床医学   60篇
内科学   62篇
皮肤病学   5篇
神经病学   963篇
特种医学   14篇
外科学   12篇
综合类   192篇
现状与发展   1篇
预防医学   9篇
眼科学   18篇
药学   96篇
中国医学   24篇
肿瘤学   34篇
  2024年   1篇
  2023年   22篇
  2022年   7篇
  2021年   35篇
  2020年   55篇
  2019年   53篇
  2018年   47篇
  2017年   44篇
  2016年   63篇
  2015年   56篇
  2014年   69篇
  2013年   75篇
  2012年   74篇
  2011年   90篇
  2010年   93篇
  2009年   75篇
  2008年   79篇
  2007年   86篇
  2006年   82篇
  2005年   85篇
  2004年   60篇
  2003年   67篇
  2002年   66篇
  2001年   38篇
  2000年   20篇
  1999年   28篇
  1998年   22篇
  1997年   26篇
  1996年   27篇
  1995年   25篇
  1994年   18篇
  1993年   13篇
  1992年   15篇
  1991年   11篇
  1990年   11篇
  1989年   14篇
  1988年   5篇
  1987年   4篇
  1986年   15篇
  1985年   13篇
  1984年   5篇
  1983年   6篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   1篇
  1972年   1篇
排序方式: 共有1707条查询结果,搜索用时 17 毫秒
1.
Glucagon-like peptide-1 receptor has anti-apoptotic,anti-inflammatory,and neuroprotective effects.It is now recognized that the occurrence and development of chronic pain are strongly associated with anti-inflammatory responses;however,it is not clear whether glucagon-like peptide-1 receptor regulates chronic pain via anti-inflammatory mechanisms.We explored the effects of glucagon-like peptide-1 receptor on nociception,cognition,and neuroinflammation in chronic pain.A rat model of chronic pain was established using left L5 spinal nerve ligation.The glucagon-like peptide-1 receptor agonist exendin-4 was intrathecally injected into rats from 10 to 21 days after spinal nerve ligation.Electrophysiological examinations showed that,after treatment with exendin-4,paw withdrawal frequency of the left limb was significantly reduced,and pain was relieved.In addition,in the Morris water maze test,escape latency increased and the time to reach the platform decreased following exendin-4 treatment.Immunohistochemical staining and western blot assays revealed an increase in the numbers of activated microglia and astrocytes in the dentate gyrus of rat hippocampus,as well as an increase in the expression of tumor necrosis factor alpha,interleukin 1 beta,and interleukin 6.All of these effects could be reversed by exendin-4 treatment.These findings suggest that exendin-4 can alleviate pain-induced neuroinflammatory responses and promote the recovery of cognitive function via the glucagon-like peptide-1 receptor pathway.All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Renmin Hospital of Wuhan University of China(approval No.WDRM 20171214)on September 22,2017.  相似文献   
2.
3.
Astrocytes are the most widespread and heterogeneous glial cells in the central nervous system and key regulators for brain development. They are capable of receiving neurotransmitters produced by synaptic activities and regulating synaptic functions by releasing gliotransmitters as part of the tripartite synapse. In addition to communicating with neurons at synaptic levels, astrocytes can integrate into inhibitory neural networks to interact with neurons in neuronal circuits. Astrocytes are closely related to the pathogenesis and pathological processes of neurodegenerative diseases (NDs). Recently, optogenetics has now been applied to reveal the function of astrocytes in physiology and pathology. Herein, we discuss the possibility whether optogenetics could be used to control the release of gliotransmitters and regulate astrocytic membrane channels. Thus, the capability of modulating the bidirectional interactions between astrocytes and neurons in both synaptic and neuronal networks via optogenetics is evaluated. Furthermore, we discuss that manipulating astrocytes via optogenetics might be an effective way to investigate the potential therapeutic strategy for NDs.  相似文献   
4.
Ischemic stroke leads to neuronal damage induced by excitotoxicity, inflammation, and oxidative stress. Astrocytes play diverse roles in stroke and ischemia-induced inflammation, and autophagy is critical for maintaining astrocytic functions. Our previous studies showed that the activation of G protein-coupled receptor 30 (GPR30), an estrogen membrane receptor, protected neurons from excitotoxicity. However, the role of astrocytic GPR30 in maintaining autophagy and neuroprotection remained unclear. In this study, we found that the neuroprotection induced by G1 (GPR30 agonist) in wild-type mice after a middle cerebral artery occlusion was completely blocked in GPR30 conventional knockout (KO) mice but partially attenuated in astrocytic or neuronal GPR30 KO mice. In cultured primary astrocytes, glutamate exposure induced astrocyte proliferation and decreased astrocyte autophagy by activating mammalian target of rapamycin (mTOR) and c-Jun N-terminal kinase (JNK) and inhibiting p38 mitogen-activated protein kinase (MAPK) pathway. G1 treatment restored autophagy to its basal level by regulating the p38 pathway but not the mTOR and JNK signaling pathways. Our findings revealed a key role of GPR30 in neuroprotection via the regulation of astrocyte autophagy and support astrocytic GPR30 as a potential drug target against ischemic brain damage.  相似文献   
5.
Liver kinase B1 (LKB1) is a ubiquitously expressed kinase involved in the regulation of cell metabolism, growth, and inflammatory activation. We previously reported that a single nucleotide polymorphism in the gene encoding LKB1 is a risk factor for multiple sclerosis (MS). Since astrocyte activation and metabolic function have important roles in regulating neuroinflammation and neuropathology, we examined the serine/threonine kinase LKB1 in astrocytes in a chronic experimental autoimmune encephalomyelitis mouse model of MS. To reduce LKB1, a heterozygous astrocyte-selective conditional knockout (het-cKO) model was used. While disease incidence was similar, disease severity was worsened in het-cKO mice. RNAseq analysis identified Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in het-cKO mice relating to mitochondrial function, confirmed by alterations in mitochondrial complex proteins and reductions in mRNAs related to astrocyte metabolism. Enriched pathways included major histocompatibility class II genes, confirmed by increases in MHCII protein in spinal cord and cerebellum of het-cKO mice. We observed increased numbers of CD4+ Th17 cells and increased neuronal damage in spinal cords of het-cKO mice, associated with reduced expression of choline acetyltransferase, accumulation of immunoglobulin-γ, and reduced expression of factors involved in motor neuron survival. In vitro, LKB1-deficient astrocytes showed reduced metabolic function and increased inflammatory activation. These data suggest that metabolic dysfunction in astrocytes, in this case due to LKB1 deficiency, can exacerbate demyelinating disease by loss of metabolic support and increase in the inflammatory environment.  相似文献   
6.
7.
During multiple sclerosis (MS), an inflammatory and neurodegenerative disease of the central nervous system (CNS), symptoms, and outcomes are determined by the location of inflammatory lesions. While we and others have shown that T cell cytokines differentially regulate leukocyte entry into perivascular spaces and regional parenchymal localization in murine models of MS, the molecular mechanisms of this latter process are poorly understood. Here, we demonstrate that astrocytes exhibit region-specific responses to T cell cytokines that promote hindbrain versus spinal cord neuroinflammation. Analysis of cytokine receptor expression in human astrocytes showed region-specific responsiveness to Th1 and Th17 inflammatory cytokines. Consistent with this, human and murine astrocytes treated with these cytokines exhibit differential expression of the T cell localizing molecules VCAM-1 and CXCR7 that is both cytokine and CNS region-specific. Using in vivo models of spinal cord versus brain stem trafficking of myelin-specific T cells and astrocyte-specific deletion strategies, we confirmed that Th1 and Th17 cytokines differentially regulate astrocyte expression of VCAM-1 and CXCR7 in these locations. Finally, stereotaxic injection of individual cytokines into the hindbrain or spinal cord revealed region- and cytokine-specific modulation of localizing cue expression by astrocytes. These findings identify a role for inflammatory cytokines in mediating local astrocyte-dependent mechanisms of immune cell trafficking within the CNS during neuroinflammation.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号