首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   54篇
  国内免费   16篇
儿科学   2篇
妇产科学   4篇
基础医学   137篇
口腔科学   6篇
临床医学   38篇
内科学   74篇
皮肤病学   14篇
神经病学   61篇
特种医学   17篇
外科学   19篇
综合类   40篇
预防医学   26篇
眼科学   2篇
药学   280篇
中国医学   4篇
肿瘤学   61篇
  2023年   8篇
  2022年   7篇
  2021年   17篇
  2020年   27篇
  2019年   13篇
  2018年   22篇
  2017年   26篇
  2016年   22篇
  2015年   28篇
  2014年   38篇
  2013年   84篇
  2012年   30篇
  2011年   44篇
  2010年   42篇
  2009年   28篇
  2008年   41篇
  2007年   29篇
  2006年   25篇
  2005年   25篇
  2004年   29篇
  2003年   31篇
  2002年   17篇
  2001年   11篇
  2000年   14篇
  1999年   12篇
  1998年   10篇
  1997年   14篇
  1996年   9篇
  1995年   11篇
  1994年   12篇
  1993年   3篇
  1992年   10篇
  1991年   6篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   5篇
  1984年   7篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
排序方式: 共有785条查询结果,搜索用时 15 毫秒
1.
In the last decade, the development of new radiopharmaceuticals for the imaging and therapy of prostate cancer has been a highly active and important area of research, especially focusing on the prostate-specific membrane antigen (PSMA), an antigen which is upregulated in prostate, as well as in other tumor cells. A large variety of PSMA ligands have been radiolabeled, to date. Among the various derivatives, PSMA-617 resulted to be one of the most interesting in terms of interaction with the antigen and clinical properties, and its lutetium-177 labeled version has recently been approved by regulatory agencies for therapeutic purposes. For this reasons, the radiolabeling with fluorine-18 of a PSMA-617 derivative might be of interest. Beside other methodologies to radiolabel macromolecules with fluorine-18, the “click-chemistry” approach resulted to be very useful, and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is considered one of most efficient and reliable. This paper proposes the synthesis of a suitable precursor for the radiolabeling with fluorine-18 of a new PSMA-617 derivative. The whole radiosynthetic procedure has been fully automated, and the final product, which proved to be stable in plasma, has been obtained with radiochemical yield and purity suitable for subsequent preclinical studies.  相似文献   
2.
N‐methyl‐D‐aspartate (NMDA) receptors play key roles in physiology by regulating the synaptic plasticity and the cellular mechanism involved in learning and memory. The GluN2A subunit is the most abundant expression of NMDA receptors in mature brain, and its dysfunction has been implicated in various neurological disorders. However, the function of GluN2A subunit in physiological and pathological conditions is not yet completely unveil due to the lack of subunit‐selective ligands, including specific positron emission tomography (PET)/single photon emission computed tomography (SPECT) imaging probes. In this review, recent progresses in understanding its pathophysiological role, the structure‐activity relationship, and the postulated mechanisms of novel GluN2A ligands as well as status of molecular imaging probes for PET are summarized.  相似文献   
3.
A series of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1‐f]purine‐2,4(3H,8H)‐dione has been synthesized in an attempt to discover a new class of psychotropic agents. Compounds were evaluated for their in vitro affinity for serotonin 5‐HT1A, 5‐HT7, and phosphodiesterases PDE4 and PDE10. The most potent compound 2‐pyrimidinyl‐1‐piperazinyl‐butyl‐imidazo[2,1‐f]purine‐2,4‐dione ( 4b ) behaved as strong and selective antagonist of 5‐HT1A. Molecular modeling studies revealed differences in binding mode between compound 4b and buspirone, which might reflect variation of the ligands’ affinity and potency in the 5‐HT1A receptor. Compound 4b in silico models demonstrated drug‐likeness properties and, contrary to buspirone, showed a metabolic stability in mouse liver microsomes system. Experimentally obtained value of apparent permeability coefficient Papp for 4b in parallel artificial permeability assay indicates the possibility of binding weakly to plasma proteins and high intestinal absorption fraction. Evaluation of the antidepressant‐ and anxiolytic‐like activities of 4b revealed both activities at the same dose of 1.25 mg/kg and seemed to be specific. The antidepressant and/or anxiolytic properties of 4b may be related to its first‐pass effect.  相似文献   
4.
Modes of interactions of small ligands with CYP3A4 have been defined using the Template established in our previous studies (DMPK. 34: 113–125 2019 and 34 351–364 2019). Interactions of polyaromatic hydrocarbons such as benzo[a]pyrene, pyrene and dibenzo[a,j]acridine were refined with the idea of Right-side movement of ligands at Rings A and B of Template. Expected formation of metabolites from the placements faithfully matched with experimentally observed sites of their metabolisms and also with preferred orders of regio-isomeric metabolite abundances in recombinant CYP3A4 system. In comparison of CYP3A4-ligand data with the placements on simulations, a futile sitting of non-substituted and free rotatable phenyl structures was suggested as a cause of poor oxidations of the phenyl parts of CYP3A4 ligands. These data were in turn indicative of the role of the rotation-ceasing action for the function. Typical inhibitors, ketoconazole, nicardipine, mibefradil and GF-I-1 shared mutuality on their sittings, in which the inhibitor molecules hold a CYP3A4 residue from dual sides on Template. In addition, clotrimazole would be stuck between facial- and rear-side walls of CYP3A4 and interact with ferric iron through nitrogen atom of the imidazole part. These data offered structural bases of CYP3A4-inhibitory actions of ligands.  相似文献   
5.
Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain–containing adapter-inducing IFN-β (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868–880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes and activation of TRIF-mediated signaling in macrophages. We confirmed their findings with LPS but report here that CD14 is not required for receptor endocytosis and downstream signaling mediated by TLR4/MD2 agonistic antibody (UT12) and synthetic small-molecule TLR4 ligands (1Z105) in murine macrophages. CD14 deficiency completely ablated the LPS-induced TBK1/IRF3 signaling axis that mediates production of IFN-β in murine macrophages without affecting MyD88-mediated signaling, including NF-κB, MAPK activation, and TNF-α and IL-6 production. However, neither the MyD88- nor TRIF-signaling pathways and their associated cytokine profiles were altered in the absence of CD14 in UT12- or 1Z105-treated murine macrophages. Eritoran (E5564), a lipid A antagonist that binds the MD2 “pocket,” completely blocked LPS- and 1Z105-driven, but not UT12-induced, TLR4 dimerization and endocytosis. Furthermore, TLR4 endocytosis is induced in macrophages tolerized by exposure to either LPS or UT12 and is independent of CD14. These data indicate that TLR4 receptor endocytosis and the TRIF-signaling pathway are dissociable and that TLR4 internalization in macrophages can be induced by UT12, 1Z105, and during endotoxin tolerance in the absence of CD14.Toll-like receptor 4 (TLR4) signaling plays a crucial role in host defense against Gram-negative bacteria by recognizing the outer membrane component, lipopolysaccharide (LPS) (13). TLR4 signaling is initiated by transfer of an LPS monomer from LPS binding protein (LBP) to cluster of differentiation 14 (CD14) (GPI-linked or soluble). In turn, CD14 transfers monomeric LPS to myeloid differentiation factor 2 (MD-2), a protein that associates noncovalently with TLR4 (4). Appropriate ligand binding to MD2 results in dimerization of two TLR4/MD2 complexes (4). TLR4 is unique in that it is the only TLR that activates both myeloid differentiation primary response 88 (MyD88) and TIR-domain–containing adapter-inducing IFN-β (TRIF)-dependent signaling pathways (5, 6). MyD88-mediated, TLR4 signaling occurs mainly at plasma membranes and involves IL-1R–associated kinases phosphorylation, association of TNF-receptor–associated factor 6, and downstream signaling that results in NF-κB activation and induction of proinflammatory mediators such as TNF-α and IL-6 (7). In contrast, TRIF-mediated signaling in response to LPS occurs at the endosomal membrane after internalization of the TLR4 that, in turn, activates IFN regulatory factor 3 (IRF3), resulting in production of IFN-β, IP-10, and other IRF-3–dependent genes, as well as delayed NF-κB activation (8). Recent studies have shown that the endocytosis of TLR4 is tightly controlled by several molecules. Rab11a, ARF6, and p120-catenin have been implicated in Escherichia coli/LPS-induced TLR4 endocytosis and IRF3 activation (911). Zanoni et al. showed that CD14 plays critical roles in translocation of TLR4 into endosomes and in activation of IRF3 that are dependent upon the enzymatic activities of PLCγ2 and Syk (12). However, CD14-independent TLR4 endocytosis and TRIF signaling have not been reported.UT12 is a monoclonal antibody (MAb) with specificity for the mouse TLR4/MD2 complex and mediates LPS-like signaling (13). It has been shown that UT12 induces endotoxic shock-like symptoms in mice including augmentation of TNF-α and IL-6. Furthermore, UT12 induced long-term tolerance and protection against LPS-induced lethal shock in mice (14). However, the ability of UT12 to induce translocation of TLR4/MD2 into endosomes, as well as its potential for mediating TRIF-dependent signaling, has not been reported. Recently, a group of substituted pyrimido[5,4-b]indoles, synthetic ligands for TLR4 that activate NF-κB that act in a CD14-independent manner, were discovered by high-throughput screening (15). These synthetic ligands induced IL-6 and IP-10 in a TLR4/MD2-dependent, but CD14-independent manner (16). They, too, have not been tested for TLR4 endocytosis and TRIF-dependent intermediates.In this study, we report, for the first time to our knowledge, CD14-independent translocation of TLR4 to endosomes and TRIF signaling by UT12 and small synthetic TLR4 ligands (1Z105). A TLR4 antagonist, Eritoran, that binds to a deep hydrophobic pocket in MD2 and blocks signaling induced by LPS, UT12, and 1Z105, blocked only TLR4 internalization and dimerization induced by LPS and 1Z105. Despite TLR4/MD2 internalization, endotoxin-tolerized macrophages fail to activate TRIF-mediated signaling. These findings reveal previously unidentified insights into the possible role of CD14 in LPS-mediated TLR4 endocytosis and signaling and demonstrate that TLR4 endocytosis and signaling are dissociable processes.  相似文献   
6.
The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.  相似文献   
7.
8.
Polymers have been utilized to deliver the drug to targeted site in controlled manner, achieving the high-therapeutic efficacy. Polymeric drug conjugates having variable ligands as attachments have been proved to be biodegradable, stimuli sensitive and targeted systems. Numerous polymeric drug conjugates having linkers degraded by acidity or intracellular enzymes or sensitive to over expressed groups of diseased organ/tissue have been synthesized during last decade to develop targeted delivery systems. Most of these organs have number of receptors attached with different cells such as Kupffer cells of liver have mannose-binding receptors while hepatocytes have asialoglycoprotein receptors on their surface which mainly bind with the galactose derivatives. Such ligands can be used for achieving high targeting and intracellular delivery of the drug. This review presents detailed aspects of receptors found in different cells of specific organ and ligands with binding efficiency to these specific receptors. This review highlights the need of further studies on organ-specific polymer–drug conjugates by providing detailed account of polymeric conjugates synthesized till date having organ-specific targeting.  相似文献   
9.
Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.  相似文献   
10.
The reaction of 2,6-diformyl-4-methylphenol (DFMF) with 1-amino-2-propanol (AP) and tris(hydroxymethyl)aminomethane (THMAM) was investigated in the presence of Cobalt(II) salts, (X = ClO4, CH3CO2, Cl, NO3), sodium azide (NaN3), and triethylamine (TEA). In one pot, the variation in Cobalt(II) salt results in the self-assembly of dinuclear, tetranuclear, and H-bonding-directed polynuclear coordination complexes of Cobalt(III), Cobalt(II), and mixed-valence CoIICoIII: [Co2III(H2L1)2(AP1)(N3)](ClO4)2 (1), [Co4(H2L1)23-1,1,1-N3)2(µ-1,1-N3)2Cl2(CH3OH)2]·4CH3OH (2), [Co2IICo2III(HL2)2(µ-CH3CO2)23-OH)2](NO3)2·2CH3CH2OH (3), and [Co2IICo2III (H2L12)2(THMAM−1)2](NO3)4 (4). In 1, two cobalt(III) ions are connected via three single atom bridges; two from deprotonated ethanolic oxygen atoms in the side arms of the ligands and one from the1-amino-2-propanol moiety forming a dinuclear unit with a very short (2.5430(11) Å) Co-Co intermetallic separation with a coordination number of 7, a rare feature for cobalt(III). In 2, two cobalt(II) ions in a dinuclear unit are bridged through phenoxide O and μ3-1,1,1-N3 azido bridges, and the two dinuclear units are interconnected by two μ-1,1-N3 and two μ3-1,1,1-N3 azido bridges generating tetranuclear cationic [Co4(H2L1)23-1,1,1-N3)2(µ-1,1-N3)2Cl2(CH3OH)2]2+ units with an incomplete double cubane core, which grow into polynuclear 1D-single chains along the a-axis through H-bonding. In 3, HL2− holds mixed-valent Co(II)/Co(III) ions in a dinuclear unit bridged via phenoxide O, μ-1,3-CH3CO2, and μ3-OH bridges, and the dinuclear units are interconnected through two deprotonated ethanolic O in the side arms of the ligands and two μ3-OH bridges generating cationic tetranuclear [Co2IICo2III(HL2)2(µ-CH3CO2)23-OH)2]2+ units with an incomplete double cubane core. In 4, H2L1−2 holds mixed-valent Co(II)/Co(III) ions in dinuclear units which dimerize through two ethanolic O (μ-RO) in the side arms of the ligands and two ethanolic O (μ3-RO) of THMAM bridges producing centrosymmetric cationic tetranuclear [Co2IICo2III (H2L12)2(THMAM−1)2]4+ units which grow into 2D-sheets along the bc-axis through a network of H-bonding. Bulk magnetization measurements on 2 demonstrate that the magnetic interactions are completely dominated by an overall ferromagnetic coupling occurring between Co(II) ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号