首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6978篇
  免费   662篇
  国内免费   448篇
耳鼻咽喉   2篇
儿科学   41篇
妇产科学   4篇
基础医学   1122篇
口腔科学   7篇
临床医学   159篇
内科学   315篇
皮肤病学   1篇
神经病学   4392篇
特种医学   112篇
外科学   66篇
综合类   828篇
预防医学   148篇
眼科学   2篇
药学   653篇
中国医学   211篇
肿瘤学   25篇
  2024年   3篇
  2023年   31篇
  2022年   39篇
  2021年   121篇
  2020年   171篇
  2019年   155篇
  2018年   121篇
  2017年   197篇
  2016年   214篇
  2015年   229篇
  2014年   322篇
  2013年   394篇
  2012年   404篇
  2011年   376篇
  2010年   439篇
  2009年   359篇
  2008年   421篇
  2007年   394篇
  2006年   427篇
  2005年   351篇
  2004年   322篇
  2003年   325篇
  2002年   258篇
  2001年   199篇
  2000年   127篇
  1999年   132篇
  1998年   135篇
  1997年   103篇
  1996年   110篇
  1995年   107篇
  1994年   89篇
  1993年   78篇
  1992年   83篇
  1991年   68篇
  1990年   50篇
  1989年   32篇
  1988年   36篇
  1987年   25篇
  1986年   80篇
  1985年   111篇
  1984年   116篇
  1983年   94篇
  1982年   78篇
  1981年   81篇
  1980年   52篇
  1979年   10篇
  1977年   5篇
  1976年   4篇
  1973年   4篇
  1971年   2篇
排序方式: 共有8088条查询结果,搜索用时 31 毫秒
1.
The locus coeruleus (LC) contains the majority of central noradrenergic neurons sending wide projections throughout the entire CNS. The LC is considered to be essential for multiple key brain functions including arousal, attention and adaptive stress responses as well as higher cognitive functions and memory. Electrophysiological studies of LC neurons have identified several characteristic functional features such as low‐frequency pacemaker activity with broad action potentials, transient high‐frequency burst discharges in response to salient stimuli and an apparently homogeneous inhibition of firing by activation of somatodendritic α2 autoreceptors (α2AR). While stress‐mediated plasticity of the α2AR response has been described, it is currently unclear whether different LC neurons projecting to distinct axonal targets display differences in α2AR function. Using fluorescent beads‐mediated retrograde tracing in adult C57Bl6/N mice, we compared the anatomical distributions and functional in vitro properties of identified LC neurons projecting either to medial prefrontal cortex, hippocampus or cerebellum. The functional in vitro analysis of LC neurons confirmed their mostly uniform functional properties regarding action potential generation and pacemaker firing. However, we identified significant differences in tonic and evoked α2AR‐mediated responses. While hippocampal‐projecting LC neurons were partially inhibited by endogenous levels of norepinephrine and almost completely silenced by application of saturating concentrations of the α2 agonist clonidine, prefrontal‐projecting LC neurons were not affected by endogenous levels of norepinephrine and only partially inhibited by saturating concentrations of clonidine. Thus, we identified a limited α2AR control of electrical activity for prefrontal‐projecting LC neurons indicative of functional heterogeneity in the LC‐noradrenergic system.  相似文献   
2.
3.
The hippocampus of rodents undergoes structural remodeling throughout adulthood, including the addition of new neurons. Adult neurogenesis is sensitive to environmental enrichment and stress. Microglia, the brain's resident immune cells, are involved in adult neurogenesis by engulfing dying new neurons. While previous studies using laboratory environmental enrichment have investigated alterations in brain structure and function, they do not provide an adequate reflection of living in the wild, in which stress and environmental instability are common. Here, we compared mice living in standard laboratory settings to mice living in outdoor enclosures to assess the complex interactions among environment, gut infection, and hippocampal plasticity. We infected mice with parasitic worms and studied their effects on adult neurogenesis, microglia, and functions associated with the hippocampus, including cognition and anxiety regulation. We found an increase in immature neuron numbers of mice living in outdoor enclosures regardless of infection. While outdoor living prevented increases in microglial reactivity induced by infection in both the dorsal and ventral hippocampus, outdoor mice with infection had fewer microglia and microglial processes in the ventral hippocampus. We observed no differences in cognitive performance on the hippocampus‐dependent object location task between infected and uninfected mice living in either setting. However, we found that infection caused an increase in anxiety‐like behavior in the open field test but only in outdoor mice. These findings suggest that living conditions, as well as gut infection, interact to produce complex effects on brain structure and function.  相似文献   
4.
Dietary omega‐3 fatty acids accumulate and are actively retained in central nervous system membranes, mainly in synapses, dendrites and photoreceptors. Despite this selective enrichment, their impact on synaptic function and plasticity has not been fully determined at the molecular level. In this study, we explored the impact of omega‐3 fatty acid deficiency on synaptic function in the hippocampus. Dietary omega‐3 fatty acid deficiency for 5 months after weaning led to a 65% reduction in the concentration of docosahexaenoic acid in whole brain synaptosomal phospholipids with no impact on global dopaminergic or serotonergic turnover. We observed reduced concentrations of glutamate receptor subunits, including GluA1, GluA2 and NR2B, and synaptic vesicle proteins synaptophysin and synaptotagmin 1 in hippocampal synaptosomes of omega‐3 fatty acid‐deficient mice as compared to the omega‐3 fatty acid rich group. In contrast, an increased concentration of neuronal inositol 1,4,5‐trisphosphate‐receptor (IP3‐R) was observed in the deficient group. Furthermore, omega‐3 fatty acid deficiency reduced the long‐term potentiation (LTP) in stratum oriens of the hippocampal CA1 area, but not in stratum radiatum. Thus, omega‐3 fatty acids seem to have specific effects in distinct subsets of glutamatergic synapses, suggesting specific molecular interactions in addition to altering plasma membrane properties on a more global scale.  相似文献   
5.
Survivors of childhood acute lymphoblastic leukemia (ALL) treated with chemotherapy only are at risk for neurocognitive impairment. Regions of interest were identified a priori based on glucocorticoid receptor distribution, and sex‐stratified multivariable linear regression models were used to test associations between brain MRI morphology and total number of intrathecal injections, and serum concentration of dexamethasone and methotrexate. Compared with controls, ALL survivors have persistently smaller volumes in the bilateral cerebellum (P < 0.005), hippocampal subregions (P < 0.03), temporal lobe regions (P < 0.03), frontal lobe regions (P < 0.04), and parietal lobe regions (precuneus; P < 0.002). Long‐term problems with learning may be related to residual posttreatment brain differences.  相似文献   
6.
7.
《Brain stimulation》2020,13(4):1080-1086
BackgroundVolume increases of the hippocampus after electroconvulsive therapy (ECT) are a robust finding, pointing into the direction of neurogenesis. However, such volumetric increases could also be explained by edema and/or neuroplastic changes (such as angiogenesis).ObjectivesIf edema explains the volume increase of the hippocampus we hypothesize it would lead to increased mean diffusivity (MD). If neuroplastic would explain the volume increase, it would lead to decreased MD. To investigate angiogenesis as explanation we studied the perfusion fraction f and the pseudodiffusion component D1 obtained from intravoxel incoherent motion (IVIM) data, and relative perfusion changes obtained from arterial spin labelling (ASL) data.MethodsUsing ultra-high field (7 tesla) MRI we acquired IVIM and ASL data. We compared MD, f, D1 and ASL values for both hippocampi in 21 patients (before and after 10 ECT sessions) and 8 healthy controls (without ECT) in a linear mixed model adjusting for age and gender.ResultsWe found a significant decrease in MD (which was absent in the healthy controls) in the left and right hippocampus (t = -3.98, p < 0.001). In addition, a decrease in f (t = -4.61, p < 0.001, but not in controls) and no differences in D1 or ASL perfusion values (both p > 0.05) were found.ConclusionsThe decrease in MD in perfusion fraction f suggest that formation of edema nor angiogenesis are responsible for the ECT-induced volume increases in the hippocampus. Also, it supports the hypothesis that hippocampal volume increases might be due to neuroplastic changes.  相似文献   
8.
Most studies investigating the effect of childhood trauma on the brain are retrospective and mainly focus on maltreatment, whereas different types of trauma exposure such as growing up in a violent neighborhood, as well as developmental stage, could have differential effects on brain structure and function. The current magnetic resonance imaging study assessed the effect of trauma exposure broadly and violence exposure more specifically, as well as developmental stage on the fear neurocircuitry in 8‐ to 14‐year‐old children and adolescents (N = 69). We observed reduced hippocampal and increased amygdala volume with increasing levels of trauma exposure. Second, higher levels of violence exposure were associated with increased activation in the amygdala, hippocampus, and ventromedial prefrontal cortex during emotional response inhibition. This association was specifically observed in children younger than 10 years. Finally, increased functional connectivity between the amygdala and brainstem was associated with higher levels of violence exposure. Based on the current findings, it could be hypothesized that trauma exposure during childhood results in structural changes that are associated with later risk for psychiatric disorders. At the same time, it could be postulated that growing up in an unsafe environment leads the brain to functionally adapt to this situation in a way that promotes survival, where the long‐term costs or consequences of these adaptations are largely unknown and an area for future investigations.  相似文献   
9.
10.
The specific role of postsynaptic activity for the generation of a functional magnetic resonance imaging (fMRI) response was determined by a simultaneous measurement of generated field excitatory postsynaptic potentials (fEPSPs) and blood oxygen level-dependent (BOLD) response in the rat hippocampal CA1 region during electrical stimulation of the contralateral CA3 region. The stimulation electrode was placed either in the left CA3a/b or CA3c, causing the preferentially basal or apical dendrites of the pyramidal cells in the right CA1 to be activated. Consecutive stimulations with low-intensity stimulation trains (i.e., 16 pulses for 8 seconds) resulted in clear postsynaptic responses of CA1 pyramidal cells, but in no significant BOLD responses. In contrast, consecutive high-intensity stimulation trains resulted in stronger postsynaptic responses that came along with minor (during stimulation of the left CA3a/b) or substantial (during stimulation of the left CA3c) spiking activity of the CA1 pyramidal cells, and resulted in the generation of significant BOLD responses in the left and right hippocampus. Correlating the electrophysiologic parameters of CA1 pyramidal cell activity (fEPSP and spiking activity) with the resultant BOLD response revealed no positive correlation. Consequently, postsynaptic activity of pyramidal cells, the most abundant neurons in the CA1, is not directly linked to the measured BOLD response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号