首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4867篇
  免费   297篇
  国内免费   168篇
耳鼻咽喉   10篇
儿科学   27篇
妇产科学   8篇
基础医学   751篇
口腔科学   13篇
临床医学   160篇
内科学   260篇
皮肤病学   7篇
神经病学   2357篇
特种医学   85篇
外科学   81篇
综合类   341篇
预防医学   77篇
眼科学   78篇
药学   952篇
中国医学   101篇
肿瘤学   24篇
  2023年   26篇
  2022年   18篇
  2021年   60篇
  2020年   50篇
  2019年   85篇
  2018年   66篇
  2017年   91篇
  2016年   94篇
  2015年   123篇
  2014年   158篇
  2013年   263篇
  2012年   253篇
  2011年   303篇
  2010年   286篇
  2009年   317篇
  2008年   296篇
  2007年   270篇
  2006年   250篇
  2005年   214篇
  2004年   201篇
  2003年   218篇
  2002年   209篇
  2001年   157篇
  2000年   124篇
  1999年   116篇
  1998年   123篇
  1997年   99篇
  1996年   87篇
  1995年   81篇
  1994年   66篇
  1993年   63篇
  1992年   58篇
  1991年   35篇
  1990年   39篇
  1989年   27篇
  1988年   21篇
  1987年   12篇
  1986年   40篇
  1985年   70篇
  1984年   50篇
  1983年   52篇
  1982年   54篇
  1981年   41篇
  1980年   27篇
  1979年   11篇
  1978年   11篇
  1977年   6篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
排序方式: 共有5332条查询结果,搜索用时 15 毫秒
1.

Background

Glutamate plays a key role for post-ischaemic recovery of myocardial metabolism. According to post hoc analyses of the two GLUTAMICS trials, patients without diabetes benefit from glutamate with less myocardial dysfunction after coronary artery bypass surgery (CABG). Copeptin reflects activation of the Arginine Vasopressin system and is a reliable marker of heart failure but available studies in cardiac surgery are limited. We investigated whether glutamate infusion is associated with reduced postoperative rises of plasma Copeptin (p-Copeptin) after CABG.

Methods

A prespecified randomised double-blind substudy of GLUTAMICS II. Patients had left ventricular ejection fraction ≤0.30 or EuroSCORE II ≥3.0 and underwent CABG ± valve procedure. Intravenous infusion of 0.125 M L-glutamic acid or saline at 1.65 mL/kg/h was commenced 10–20 min before the release of the aortic cross-clamp and then continued for another 150 min P-Copeptin was measured preoperatively and postoperatively on day one (POD1) and day three. The primary endpoint was an increase in p-Copeptin from the preoperative level to POD1. Postoperative stroke ≤24 h and mortality ≤30 days were safety outcomes.

Results

We included 181 patients of whom 48% had diabetes. The incidence of postoperative mortality ≤30 days (0% vs. 2.1%; p = .50) and stroke ≤24 h (0% vs. 3.2%; p = .25) did not differ between the glutamate group and controls. P-Copeptin increased postoperatively with the highest values recorded on POD1 without significant inter-group differences. Among patients without diabetes, p-Copeptin did not differ preoperatively but postoperative rise from preoperative level to POD1 was significantly reduced in the glutamate group (73 ± 66 vs. 115 ± 102 pmol/L; p = .02). P-Copeptin was significantly lower in the Glutamate group on POD1 (p = .02) and POD 3 (p = .02).

Conclusions

Glutamate did not reduce rises of p-Copeptin significantly after moderate to high-risk CABG. However, glutamate was associated with reduced rises of p-Copeptin among patients without diabetes. These results agree with previous observations suggesting that glutamate mitigates myocardial dysfunction after CABG in patients without diabetes. Given the exploratory nature of these findings, they need to be confirmed in future studies.  相似文献   
2.
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra. Therefore, the study of the mechanisms, as well as the search for new targets for the prevention and treatment of neurodegenerative diseases, is an important focus of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic neurons; however, other neurotransmitter systems are also involved. Research reports have indicated that the glutamatergic system is involved in different pathological conditions, including dopaminergic neurotoxicity. Over the last two decades, the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors (mGluRs) in the development of extrapyramidal disorders. However, the specific mechanisms driving these processes are presently unclear. The participation of the universal neuronal messenger nitric oxide (NO) in the mechanisms of dopaminergic neurotoxicity has attracted increased attention. The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, we focused on studies conducted on the rotenone-induced PD model. This review is also an outline of our own results obtained using the method of electron paramagnetic resonance, which allows quantitation of NO radicals in brain structures.  相似文献   
3.
Schizophrenia is a chronic and severe psychiatric disorder that has profound impact on an individual’s life and on society. Thus, developing more effective therapeutic interventions is essential. Over the past quarter‐century, an abundance of evidence from pharmacologic challenges, post‐mortem studies, brain imaging, and genetic studies supports the role of glutamatergic dysregulation in the pathophysiology of schizophrenia, and the results of recent randomized clinical trials based on this evidence have yielded promising results. In this article, we review the evidence that alterations in glutamatergic neurotransmission, especially focusing on the N‐methyl‐d ‐aspartate receptor (NMDAR) function, may be a critical causative feature of schizophrenia, how this contributes to pathologic circuit function in the brain, and how these insights are revealing whole new avenues for treatment development that could reduce treatment‐resistant symptoms, which account for persistent disability.  相似文献   
4.
Introduction: Ocular dysfunctions and toxicities induced by antiepileptic drugs (AEDs) are rarely reviewed and not frequently received attention by treating physicians compared to other adverse effects (e.g. endocrinologic, cognitive and metabolic). However, some are frequent and progressive even in therapeutic concentrations or result in permanent blindness. Although some adverse effects are non-specific, others are related to the specific pharmacodynamics of the drug.

Areas covered: This review was written after detailed search in PubMed, EMBASE, ISI web, SciELO, Scopus, and Cochrane Central Register databases (from 1970 to 2019). It summarized the reported ophthalmologic adverse effects of the currently available AEDs; their risks and possible pathogenic mechanisms. They include ocular motility dysfunctions, retinopathy, maculopathy, glaucoma, myopia, optic neuropathy, and impaired retinal vascular autoregulation. In general, ophthalmo-neuro- or retino-toxic adverse effects of AEDs are classified as type A (dose-dependent), type B (host-dependent or idiosyncratic) or type C which is due to the cumulative effect from long-term use.

Expert opinion: Ocular adverse effects of AEDs are rarely reviewed although some are frequent or may result in permanent blindness. Increasing knowledge of their incidence and improving understanding of their risks and pathogenic mechanisms are crucial for monitoring, prevention, and management of patients’ at risk.  相似文献   

5.
Fundamental human studies which address associations between glutamate and iron metabolism are needed. Basic research reports associations between glutamate and iron metabolism. Human studies report sex differences in iron metabolism and glutamate concentrations, which suggest that these relationships may differ by sex. We hypothesised associations would be apparent between in vivo glutamate and peripheral markers of iron metabolism, and these associations would differ by sex. To test this, we recruited 40 healthy adults (20 men, 20 women) and measured (a) standard clinical biomarker concentrations for iron metabolism and (b) an in vivo proxy for glutamate concentration, glutamate with glutamine in relation to total creatine containing metabolites using proton magnetic resonance spectroscopy studies with a two‐dimensional chemical shift imaging slice, with voxels located in bilateral dorsolateral prefrontal cortices, anterior cingulate cortices and frontal white matter. Only the female group reported significant associations between peripheral markers of iron metabolism and Glx:tCr concentration: (a) right dorsolateral prefrontal cortex Glx:tCr associated positively with serum transferrin (r = .60, p = .006) and negatively with transferrin saturation (r = ?.62, p = .004) and (b) right frontal white matter Glx:tCr associated negatively with iron concentration (r = ?.59, p = .008) and transferrin saturation (r = ?.65, p = .002). Our results support associations between iron metabolism and our proxy for in vivo glutamate concentration (Glx:tCr). These associations were limited to women, suggesting a stronger regulatory control between iron and glutamate metabolism. These associations support additional fundamental research into the molecular mechanisms of this regulatory control.  相似文献   
6.
Animals can use a range of strategies to recall important locations. These include simple stimulus–response strategies and more complex spatial (place) strategies, which are thought to have distinct neural substrates. The hippocampus—and NMDA receptor activation therein—is considered to be crucial for spatial, but not response strategies. The medial prefrontal cortex has also been implicated in memory retrieval; however, evidence concerning its specific role is equivocal. Both hippocampal and prefrontal regions have been associated with flexible behavioural responding (e.g. when task demands change). Here, we investigated the use of spatial and non‐spatial strategies in the Morris water maze and their associated brain areas in rats using immediate early gene (IEG) imaging of Zif268 and c‐Fos. Specifically, we charted the involvement of hippocampal and prefrontal subregions during retrieval of spatial and non‐spatial memories. Behavioural flexibility was also examined using intact and partial cue configurations during recall. Results indicated that regions of both the hippocampus (area CA3) and prefrontal cortex (anterior cingulate cortex) were preferentially engaged in spatial memory recall compared to response learning. In addition, both spatial and non‐spatial memories were dependent on NMDA receptor activation. MK801 impaired recall performance across all groups and reduced IEG activation across hippocampal and prefrontal regions. Finally, IEG results revealed divergent patterns of Zif268 and c‐Fos activity and support the suggestion that Zif268 plays a functional role in the recall of long‐term memories.  相似文献   
7.
8.
Paired associative stimulation has been used in stroke patients as an innovative recovery treatment. However, the mechanisms underlying the therapeutic effectiveness of paired associative stimulation on neurological function remain unclear. In this study, rats were randomly divided into middle cerebral occlusion model(MCAO) and paired associated magnetic stimulation(PAMS) groups. The MCAO rat model was produced by middle cerebral artery embolization. The PAMS group received PAMS on days 3 to 20 post MCAO. The MCAO group received sham stimulation, three times every week. Within 18 days after ischemia, rats were subjected to behavioral experiments—the foot-fault test, the balance beam walking test, and the ladder walking test. Balance ability was improved on days 15 and 17, and the footfault rate was less in their affected limb on day 15 in the PAMS group compared with the MCAO group. Western blot assay showed that the expression levels of brain derived neurotrophic factor, glutamate receptor 2/3, postsynaptic density protein 95 and synapsin-1 were significantly increased in the PAMS group compared with the MCAO group in the ipsilateral sensorimotor cortex on day 21. Resting-state functional magnetic resonance imaging revealed that regional brain activities in the sensorimotor cortex were increased in the ipsilateral hemisphere, but decreased in the contralateral hemisphere on day 20. By finite element simulation, the electric field distribution showed a higher intensity, of approximately 0.4 A/m~2, in the ischemic cortex compared with the contralateral cortex in the template. Together, our findings show that PAMS upregulates neuroplasticity-related proteins, increases regional brain activity, and promotes functional recovery in the affected sensorimotor cortex in the rat MCAO model. The experiments were approved by the Institutional Animal Care and Use Committee of Fudan University, China(approval No. 201802173 S) on March 3, 2018.  相似文献   
9.
Carbon monoxide (CO) produces several neurological effects, including cognitive, mood, and behavioral disturbance. Glutamate is thought to play a particularly important role in learning and memory. Thus, the present study was aimed at investigating the local effect of CO on the glutamate level in the hippocampus of mice using in vivo reverse microdialysis. Mice were perfused with Ringer’s solution (control) or CO (60–125?μM) in Ringer’s solution into the hippocampus via microdialysis probe. Dialysate samples were collected every 20?min, and then analyzed with high-performance liquid chromatography coupled to an electrochemical detector. The result revealed that the perfusion with CO had no significant effect on glutamate levels (p?=?0.316) as compared to the control group. This finding does not support a local CO rise as the cause of the increased glutamate level in the hippocampus of mice.  相似文献   
10.
In the second part we focus on two treatment strategies that may overcome the main limitations of current antidepressant drugs. First, we review the experimental and clinical evidence supporting the use of glutamatergic drugs as fast-acting antidepressants. Secondly, we review the involvement of microRNAs (miRNAs) in the pathophysiology of major depressive disorder (MDD) and the use of small RNAs (e.g.., small interfering RNAs or siRNAs) to knockdown genes in monoaminergic and non-monoaminergic neurons and induce antidepressant-like responses in experimental animals.The development of glutamatergic agents is a promising venue for antidepressant drug development, given the antidepressant properties of the non-competitive NMDA receptor antagonist ketamine. Its unique properties appear to result from the activation of AMPA receptors by a metabolite [(2 S,6 S;2 R,6 R)-hydroxynorketamine (HNK)] and mTOR signaling. These effects increase synaptogenesis in prefrontal cortical pyramidal neurons and enhance serotonergic neurotransmission via descending inputs to the raphe nuclei. This view is supported by the cancellation of ketamine's antidepressant-like effects by inhibition of serotonin synthesis.We also review existing evidence supporting the involvement of miRNAs in MDD and the preclinical use of RNA interference (RNAi) strategies to target genes involved in antidepressant response. Many miRNAs have been associated to MDD, some of which e.g., miR-135 targets genes involved in antidepressant actions. Likewise, SSRI-conjugated siRNA evokes faster and/or more effective antidepressant-like responses. Intranasal application of sertraline-conjugated siRNAs directed to 5-HT1A receptors and SERT evoked much faster changes of pre- and postsynaptic antidepressant markers than those produced by fluoxetine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号