首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8362篇
  免费   921篇
  国内免费   213篇
耳鼻咽喉   35篇
儿科学   47篇
妇产科学   122篇
基础医学   1244篇
口腔科学   97篇
临床医学   674篇
内科学   779篇
皮肤病学   39篇
神经病学   373篇
特种医学   308篇
外科学   599篇
综合类   1292篇
现状与发展   3篇
一般理论   2篇
预防医学   1055篇
眼科学   59篇
药学   607篇
  7篇
中国医学   1936篇
肿瘤学   218篇
  2024年   25篇
  2023年   190篇
  2022年   325篇
  2021年   538篇
  2020年   494篇
  2019年   324篇
  2018年   296篇
  2017年   383篇
  2016年   423篇
  2015年   367篇
  2014年   611篇
  2013年   568篇
  2012年   500篇
  2011年   516篇
  2010年   393篇
  2009年   386篇
  2008年   360篇
  2007年   323篇
  2006年   311篇
  2005年   308篇
  2004年   228篇
  2003年   217篇
  2002年   195篇
  2001年   173篇
  2000年   114篇
  1999年   89篇
  1998年   84篇
  1997年   86篇
  1996年   65篇
  1995年   70篇
  1994年   88篇
  1993年   66篇
  1992年   42篇
  1991年   31篇
  1990年   33篇
  1989年   26篇
  1988年   30篇
  1987年   22篇
  1986年   14篇
  1985年   29篇
  1984年   28篇
  1983年   16篇
  1982年   19篇
  1981年   17篇
  1980年   15篇
  1979年   17篇
  1978年   10篇
  1977年   7篇
  1976年   7篇
  1975年   9篇
排序方式: 共有9496条查询结果,搜索用时 427 毫秒
1.
2.
3.
穴位埋线是长效针灸,是在传统针具和针法基础上建立和发展起来的,是针灸技术的发展和延伸,穴位埋线的核心技术是穿刺技术,穴位埋线的三大要素中,针具、埋藏物、穿刺技巧之间是互相影响、互相促进的。针具的改进成功实现了穴位埋线疗法的第一次飞跃,埋藏物的改进成功实现了穴位埋线疗法的第二次飞跃,穿刺技术的改进和创新是穴位埋线疗法的第三次飞跃。  相似文献   
4.
5.
目的探讨指压天枢穴加腹部按摩联合番泻叶在静脉肾盂造影患者中的应用效果。方法选取我院2018年12月至2019年8月期间行静脉肾盂造影的120例患者,随机分为两组各60例。对照组给予番泻叶,观察组给予天枢穴指压加腹部按摩联合番泻叶,比较两组的肠道清洁力度和不良反应情况。结果治疗后,观察组的肠道清洁力度明显高于对照组(P <0.05);观察组的不良反应发生率为6.67%,明显低于对照组的23.33%(P <0.05)。结论静脉肾盂造影患者采用指压天枢穴加腹部按摩联合番泻叶的效果较好,可提高肠道清洁力度,降低不良反应发生率。  相似文献   
6.
目的基于复杂网络技术分析电针治疗乳腺增生病的核心穴位及配伍穴相关性,并对电针波型进行探讨。方法检索中国期刊全文数据库(CNKI)、万方数据库、维普网数据库(VIP)中从1954年1月1日到2018年12月31日公开发表的电针治疗乳腺增生病的临床中文文献,利用Excel表格工具建立电针治疗乳腺增生病数据库,利用Matlab2014a软件进行节点中心性分析和聚类分析,利用Gephi0.9.1软件制作复杂网络示意图对分析结果进行描述和展示,利用Excel表格工具制作电针治疗乳腺增生病不同波形比例饼状图并分析其规律。结果选定43条电针处方:电针治疗乳腺增生病主穴核心度前三位依次为膻中穴、足三里、肩井穴;配伍穴位核心度前三位依次为太冲穴、太溪穴、脾俞穴;经络核心度前三位依次为足阳明胃经、任脉、足少阳胆经。配伍穴位相关性分析中,相关性频度前三位组合依次为太冲穴-太溪穴、太冲穴-肾俞穴、太冲穴-三阴交。电针波形中以连续波与疏密波常见,均具有较高的临床应用价值。结论电针治疗乳腺增生病处方以足阳明胃经为最多,其次为任脉;电针波型以连续波为主。  相似文献   
7.
【目的】 探讨行业期刊进行选题策划的方法,提升选题策划的质量。【方法】 利用互联网技术及新媒体资源,结合金属加工杂志社选题策划实例,归纳出几种选题策划的途径及方法。【结果】 结合行业热点进行选题策划,注重实效性和内容深度,提升期刊内容的可读性,可使期刊获得更多读者的关注和认可,提升期刊的行业影响力。【结论】 提高选题策划质量,可有效提升期刊内容的可读性,从而进一步提升期刊在行业的影响力。  相似文献   
8.
BackgroundParkinson’s disease (PD) is a chronic and progressive neurodegenerative disease with no cure, presenting a challenging diagnosis and management. However, despite a significant number of criteria and guidelines have been proposed to improve the diagnosis of PD and to determine the PD stage, the gold standard for diagnosis and symptoms monitoring of PD is still mainly based on clinical evaluation, which includes several subjective factors. The use of machine learning (ML) algorithms in spatial-temporal gait parameters is an interesting advance with easy interpretation and objective factors that may assist in PD diagnostic and follow up.Research questionThis article studies ML algorithms for: i) distinguish people with PD vs. matched-healthy individuals; and ii) to discriminate PD stages, based on selected spatial-temporal parameters, including variability and asymmetry.MethodsGait data acquired from 63 people with PD with different levels of PD motor symptoms severity, and 63 matched-control group individuals, during self-selected walking speed, was study in the experiments.ResultsIn the PD diagnosis, a classification accuracy of 84.6 %, with a precision of 0.923 and a recall of 0.800, was achieved by the Naïve Bayes algorithm. We found four significant gait features in PD diagnosis: step length, velocity and width, and step width variability. As to the PD stage identification, the Random Forest outperformed the other studied ML algorithms, by reaching an Area Under the ROC curve of 0.786. We found two relevant gait features in identifying the PD stage: stride width variability and step double support time variability.SignificanceThe results showed that the studied ML algorithms have potential both to PD diagnosis and stage identification by analysing gait parameters.  相似文献   
9.
目的:通过检索《针灸大成》中与气海穴治疗作用相关的文献条文,总结气海穴在治疗各系统疾病中运用频次较高的疾病及其配穴规律,为临床针灸对气海穴的使用提供理论支持。方法:以《中华医典》(第五版)中《针灸大成》作为文献检索来源,将气海穴及气海穴的别称“脖胦”“下肓”“丹田”“肓之原”“肓原”“下言”和“气泽”为检索词,用计算机检索工具及人工检索相结合的方法检索符合要求的文献条文,通过建立本研究的数据库,频次分析、条形统计图比较分析等方法,总结出气海穴在治疗各系统疾病中的运用频次及其配穴规律。结果:在《针灸大成》所涉及的条文中,气海穴尤善治疗内科疾病,在治疗内科疾病中排名前3位的是脾胃系病症、气血津液疾病、肾系病症和妇科疾病,气海穴配穴习惯为上下配穴法,同名经配穴法,以及前后配穴法,其中主要为前后配穴法和同名经配穴法。结论:气海穴《针灸大成》中单穴应用占比最高,而在气海穴众多配穴中,运用了本经配穴法、上下配穴法、前后配穴法,配穴归经主要来自任脉和足太阳膀胱经。同名经配穴法,同气相求,可增加疗效;与气海穴配伍较多的足太阳膀胱经以背腧穴为主,此为前后配穴法,亦称腹背阴阳配穴法,腹部为阴,腰背为阳,前后配穴法可起到“从阳引阴”亦可“从阴引阳”的作用,以达到调节阴阳,调和脏法,调畅经络的目的。  相似文献   
10.
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.

Globally, both mean and extreme environmental temperatures are increasing due to climate change with mean temperatures predicted to increase by 0.3–4.8 °C by the end of the century (1, 2). Aquatic ectotherms are particularly vulnerable to rising temperatures as their body temperature closely tracks the environmental temperature (3). These organisms can avoid thermal stress by migrating to cooler waters, acclimating, and/or adapting genetically (46). For species with a limited dispersal ability (e.g., species from shallow freshwater habitats; ref. 7), acclimation and evolutionary adaptation are the only possible strategies. Furthermore, for ectotherms living at the edge of their upper thermal limits, an increase in extreme temperatures may generate temperature peaks that exceed physiological limits and cause high mortality (5, 810). Although this is expected to cause strong selection toward higher upper thermal tolerance, it is largely unknown, particularly within vertebrates, whether and at what rate organisms may adapt by evolving their thermal limits (1114). These are important issues because constrained or limited evolvability (15) of upper thermal tolerance could lead to population extinctions as climate change increases the severity of heat waves.Ectotherms can also increase their thermal limits through physiological and biochemical adjustments, in a process known as thermal acclimation when they are exposed to elevated temperatures for a period of time (16, 17). Thermal acclimation, sometimes called thermal compensation, is here used interchangeably with the term physiological plasticity as outlined by Seebacher et al. (18). In the wild, individuals may experience days or weeks of warmer temperatures prior to a thermal extreme. Through physiological plasticity, the severity of an ensuing thermal extreme may be reduced, thus increasing the chance for survival (19). Furthermore, in some cases, adaptation can be accelerated by plasticity (2022). This requires that the physiological mechanisms responsible for acclimation are also (at least partly) involved in the acute response; that is, that there is a positive genetic correlation between physiological plasticity and (acute) upper thermal tolerance. It is therefore crucial to quantify the evolutionary potential of upper thermal tolerance of fish populations threatened by climate change (23, 24) and to understand the link between the evolutionary response of upper thermal tolerance and physiological plasticity.Previously detected evolution of upper thermal tolerance generally points toward a slow process (12, 13, 2531). However, estimates of the evolutionary potential in upper thermal tolerance mostly come from studies on Drosophila (12, 25, 27, 32), and empirical evidence in aquatic ectotherms and specifically vertebrates is limited. The few studies that have been performed on fish show disparate responses to selection on heat tolerance even within the same species. Baer and Travis (33) detected no response to selection yet Doyle et al. (34) and Klerks et al. (28) detected selection responses with heritabilities of 0.2 in killifish (Heterandria formosa). Despite the typical asymmetry of thermal performance curves (3, 35), studies in vertebrates are limited to unidirectional estimates of evolutionary potential (28, 31, 33) or do not account for the direction of evolution when estimating heritability in upper thermal tolerance from breeding designs (36, 37). Furthermore, while several studies have found that populations with different thermal histories have evolved different levels of heat tolerance (2931), we still lack a good understanding of how physiological plasticity within a generation, in response to a short heat exposure, interacts with genetic changes during evolution of thermal tolerance.To investigate possible asymmetry in the evolutionary potential of upper thermal tolerance in a vertebrate species, we artificially selected offspring of wild-caught zebrafish (Danio rerio) to increase and decrease upper thermal tolerance for six generations. Furthermore, to disentangle the contribution of acclimation from the genetic response to increase upper thermal tolerance, we selected two lines that were exposed to a period of warm acclimation prior to a thermal challenge. The size (>20,000 phenotyped fish) and duration (six generations) of this study are unique in a vertebrate species for a climate change-relevant selection experiment, and the results provide critical and robust information on how tropical fish may adapt to a changing climate.Being a freshwater and tropical species, zebrafish are likely to be especially vulnerable to climate change (7, 38). In the wild, zebrafish can already be found living only a few degrees below their thermal limits (17, 39) and live in shallow streams and pools (40) that have the potential to rapidly warm during heat waves. Zebrafish therefore represent a species living at the edge of its thermal limit in which rapid adaptation of thermal tolerance would be particularly beneficial for its survival. Wild-caught zebrafish originating from different sites in West Bengal, India (17, 40), were used to maximize the genetic diversity of the parental population. These wild-caught zebrafish (n = 2,265) served as parents of the starting F0 generation (n = 1,800) on which we selected upper thermal tolerance for six generations. Upper thermal tolerance was measured as the critical thermal maximum (CTmax), a commonly used measure of an organism’s acute upper thermal tolerance (16, 41). CTmax is defined as the temperature at which an individual loses equilibrium (i.e., uncontrolled and disorganized swimming in zebrafish; ref. 42) during thermal ramping. Measuring CTmax is rapid, repeatable, and does not appear to harm zebrafish (42). CTmax is ecologically relevant because it is highly correlated with both tolerance to slow warming (43) and to the upper temperature range boundaries of wild aquatic ectotherms (9).Our selection experiment consisted of four treatment groups (Up-selected, Down-selected, Acclimated Up-selected, and Control) with two replicate lines in each treatment. We established these lines by selecting fish on their CTmax in the F0 generation with each line consisting of 150 individuals (see Methods for further details of F0 generation). The offspring of those fish formed the F1 generation that consisted of 450 offspring in each line. At each generation, the Up, Down, and Control lines were all held at optimal temperature (28 °C) (39), whereas the Acclimated Up-selected lines were acclimated to a supraoptimal temperature (32 °C) for 2 wk prior to selection (17). From the F1 to F6 generations, we measured CTmax for all 450 fish in each line and selected the 33% with the highest CTmax in the Up-selected and in the Acclimated Up-selected lines, and the 33% with the lowest CTmax in the Down-selected lines. In the Control lines, 150 fish were randomly selected, measured, and retained. Thus, CTmax was measured on a total of 3,000 fish per generation and 150 individuals remained in each of the eight lines after selection, forming the parents for the next generation. The nonselected lines (Control) represented a control for the Up-selected and Down-selected lines, while the Up-selected lines represented a control for the Acclimated Up-selected lines, because these two treatments solely differed by the acclimation period to which the latter were exposed before selection. Thus, differences in CTmax between Up-selected and Acclimated Up-selected lines represent the contribution of physiological plasticity to upper thermal tolerance. If the difference between these two treatments increases during selection, it would suggest that plasticity increases during adaptation to higher CTmax (i.e., the slope the reaction norm describing the relationship between CTmax and acclimation temperature would become steeper).After six generations of selection, upper thermal tolerance had evolved in both the Up-selected and the Down-selected lines (Fig. 1). In the Up-selected lines, upper thermal tolerance increased by 0.22 ± 0.05 °C (x̄ ± 1 SE) compared to the Control lines whereas the Down-selected lines displayed a mean upper thermal tolerance 0.74 ± 0.05 °C lower than the Control (Fig. 1B; estimates for replicated lines combined). The asymmetry in the response to selection was confirmed by the estimated realized heritability, which was more than twice as high in the Down-selected lines (h2 = 0.24; 95% CI: 0.19–0.28) than in the Up-selected lines (h2 = 0.10; 95% CI: 0.05–0.14; Fig. 2).Open in a separate windowFig. 1.Upper thermal tolerance (CTmax) of wild-caught zebrafish over six episodes of selection. Duplicated lines were selected for increased (Up-selected, orange lines and triangles) and decreased (Down-selected, blue lines and squares) upper thermal tolerance. In addition, we had two Control lines (green dashed lines and diamonds). The Up, Down, and Control lines were all acclimated to a temperature of 28 °C. In addition, two lines were selected for increased upper thermal tolerance after 2 wk of warm acclimation at 32 °C (Acclimated Up-selected, red lines and circles). At each generation, the mean and 95% CIs of each line are shown (n ∼ 450 individuals per line). (A) Absolute upper thermal tolerance values. (B) The response to selection in the Up and Down lines centered on the Control lines (dashed green line). Difference between Up-selected and Acclimated-Up lines are shown in Fig. 3. The rate of adaptation (°C per generation) is reported for each treatment using estimates obtained from linear mixed effects models using the Control-centered response in the Up-selected and Down-selected lines and the absolute response for the Acclimated-Up lines (SE = ±0.01 °C in all lines).Open in a separate windowFig. 2.Realized heritability (h2) of upper thermal tolerance (CTmax) in wild-caught zebrafish. The realized heritability was estimated for each treatment as the slope of the regression of the cumulative response to selection on the cumulative selection differential using mixed effect models passing through the origin with replicate as a random effect. Slopes are presented with their 95% CIs (shaded area) for the Down-selected lines (blue) and Up-selected lines (orange). Data points represent the mean of each replicate line (n ∼ 450) over six generations of selection. Average selection differentials are 0.57 (Down) and 0.39 (Up), respectively, see SI Appendix, Table S1 for more information.At the start of the experiment (F0), warm acclimation (32 °C) increased thermal tolerance by 1.31 ± 0.05 °C (difference in CTmax between the Up-selected and Acclimated Up-selected lines in Figs. 1A and and3),3), which translates to a 0.3 °C change in CTmax per 1 °C of warming. In the last generation, the effect of acclimation had decreased by 25%, with the Acclimated-Up lines having an average CTmax 0.98 ± 0.04 °C higher than the Up lines (Fig. 3). This suggests that, despite a slight increase in CTmax in the Acclimated Up-selected lines during selection, the contribution of plasticity decreased over the course of the experiment.Open in a separate windowFig. 3.Contribution of acclimation to the upper thermal tolerance in the Acclimated-Up selected lines at each generation of selection. The contribution of acclimation was estimated as the difference between the Up and Acclimated-Up selected lines. Points and error bars represent the estimates (±SE) from a linear mixed effects model with CTmax as the response variable; Treatment (factor with two levels: Up and Acclimated Up), Generation (factor with seven levels), and their interaction as the predictor variables; and replicate line as a random factor.During the experiment, the phenotypic variation of CTmax that was left-skewed at F0 increased in the Down-selected lines and decreased in the Up-selected lines (Fig. 4). At the F6 generation, phenotypic variance was four times lower in the Up-selected lines (0.09 ± 0.01 and 0.12 ± 0.02 °C2; variance presented for each replicate line separately and SE obtained by nonparametric bootstrapping) than in the Down-selected lines (0.41 ± 0.03 and 0.50 ± 0.04 °C2), which had doubled since the start of the experiment (F0: 0.20 ± 0.01 °C2, see SI Appendix, Fig. S1). In the Acclimated Up-selected lines, the phenotypic variance that was already much lower than the Control at the F0 also decreased and reached 0.06 ± 0.01 °C2 and 0.07 ± 0.01 °C2 for the two replicates at the last generation (SI Appendix, Fig. S1).Open in a separate windowFig. 4.Distribution of upper thermal tolerance (CTmax) in selected lines. (A) Distribution for each line at each generation (F0 to F6). In the F0 generation, histograms show the preselection distribution in gray for the nonacclimated fish, in dark green for the Control lines, and in red for the Acclimated-Up fish. In all subsequent generations the Down-selected lines are in blue, the Up-selected lines in yellow, the Control lines in dark green, and Acclimated-up lines in red. All treatments use two shades, one for each replicate line. Dashed lines represent the mean CTmax for each line (n ∼ 450 individuals). (B) Distribution of upper thermal tolerance at the start (F0, in gray) and the end (F6, in blue and yellow) of the experiment for the Up-selected and Down-selected lines. The dashed gray line represents the mean of the Up-selected and Down-selected lines in the F0 generation preselection (n ∼ 900 individuals). Dashed blue and yellow lines represent the mean CTmax for Up and Down-selected lines for the F6 generation (n ∼ 450 individuals).Together with the asymmetrical response to selection and the lower response of the Acclimated Up-selected lines, these changes in phenotypic variance suggest the existence of a hard-upper limit for thermal tolerance (e.g., major protein denaturation (44), similar to the “concrete ceiling” for physiological responses to warming (14)). Such a hard-upper limit is expected to generate a nonlinear mapping of the genetic and environmental effects on the phenotypic expression of CTmax. This nonlinearity will affect the phenotypic variance of CTmax when mean CTmax approaches its upper limit (SI Appendix, Fig. S2A). For example, with directional selection toward higher CTmax, genetic changes in upper thermal tolerance will translate into progressively smaller phenotypic changes. Similarly, warm acclimation that shifts CTmax upwards will also decrease phenotypic variation in CTmax (see differences in phenotypic variance between control and Acclimated lines at the F0). This hard ceiling can also explain why an evolutionary increase in CTmax reduces the magnitude of physiological plasticity in CTmax achieved after a period of acclimation (Fig. 3 and see SI Appendix, Fig. S2B). If the sum of the genetic and plastic contributions to CTmax cannot exceed a ceiling value, this should generate a zero-sum gain between the genetic and plastic determinants of thermal tolerance. An increase in the genetic contribution to CTmax via selection should thus decrease the contribution of plasticity. Selection for a higher CTmax should therefore negatively affect the slope of the reaction norm of thermal acclimation because acclimation will increase CTmax more strongly at low than high acclimation temperature (SI Appendix, Fig. S2B).To test this hypothesis, we measured CTmax in all selected lines at the final generation (F6) after acclimation to 24, 28, and 32 °C. At all three acclimation temperatures, the Acclimated-Up lines did not differ from the Up-selected lines (average difference 0.14 ± 0.08 °C; 0.12 ± 0.09 °C; 0.14 ± 0.09 °C; at 24, 28, and 32 °C respectively; Fig. 5). This suggests that warm acclimation prior to selection did not affect the response to selection. However, considering the within-treatment differences in CTmax between fish acclimated to 28 and 32 °C, we show that the gain in CTmax due to acclimation decreases in both the Up and Acclimated-Up treatments compared to the Control and Down treatments (SI Appendix, Fig. S3). This confirms a loss of thermal plasticity in both Up-selected treatments (Up and Acclimated-Up) at higher acclimation temperatures. Notably, the loss of thermal plasticity is not evident in fish acclimated to 24 and 28 °C, possibly because at these temperatures CTmax remains further away from its hard upper limit.Open in a separate windowFig. 5.Upper thermal tolerance (CTmax) of the selected lines measured at the last generation (F6) after acclimation at 24, 28, and 32 °C. The response is calculated as the mean difference in upper thermal tolerance (CTmax) relative to the Control lines. Large points and whiskers represent mean ±1 SE for each treatment (n = 120 individuals): Up-selected (orange triangles), Down-selected (blue squares), Acclimated Up-selected (red circles), and Control (green diamonds). Smaller translucent points represent means of each replicate line (n = 60 individuals). See SI Appendix, Fig. S3 for absolute CTmax values and model estimates.Acclimated Up-selected lines are perhaps the most ecologically relevant in our selection experiment. In the wild, natural selection on upper thermal tolerance may not result from increasing mean temperatures but through rapid heating events such as heat waves (45). During heat waves, temperature may rise for days before reaching critical temperatures. This gives individuals the possibility to acclimate and increase their upper thermal tolerance prior to peak temperatures. Our results show that while warm acclimation allowed individuals to increase their upper thermal tolerance, it did not increase the magnitude or the rate of adaptation of upper thermal tolerance.For the past two decades it has been recognized that rapid evolution, at ecological timescales, occurs and may represent an essential mechanism for the persistence of populations in rapidly changing environments (24, 46, 47). Yet, in the absence of an explicit reference, rates of evolution are often difficult to categorize as slow or rapid (48). For traits related to thermal tolerance or thermal performance, this issue is complicated by the fact that the scale on which traits are measured (temperature in °C) cannot meaningfully be transformed to a proportional scale. This prevents us from comparing rates of evolution between traits related to temperature with other traits measured on different scales (49, 50). However, for thermal tolerance, the rate of increase in ambient temperature predicted over the next century represents a particularly meaningful standard against which the rate of evolution observed in our study can be compared.In India and surrounding countries where zebrafish are native, heat waves are predicted to increase in frequency, intensity, and duration, and maximum air temperatures in some regions are predicted to exceed 44 °C in all future climate scenarios (51). Air temperature is a good predictor of water temperature in shallow ponds and streams where wild zebrafish are found (17, 40, 52, 53). Thus, strong directional selection on the thermal limits of zebrafish is very likely to occur in the wild. At first sight, changes in the upper thermal tolerance observed in our study (0.04 °C per generation) as well as the heritability estimates (Down-selected: h2 = 0.24, Up-selected: h2 = 0.10) similar to those obtained in fruit flies (Drosophila melanogaster) selected for acute upper thermal tolerance (Down-selected: h2 = 0.19, Up-selected: h2 = 0.12; ref. 12), suggest that zebrafish may just be able to keep pace with climate change and acutely tolerate temperatures of 44 °C predicted by the end of the century. However, several cautions make such an optimistic prediction unlikely.First, such an extrapolation assumes a generation time of 1 y, which is likely for zebrafish but unrealistic for many other fish species. Second, such a rate of evolution is associated with a thermal culling of two-thirds of the population at each generation, a strength of selection that may be impossible to sustain in natural populations exposed to other selection pressures such as predation or harvesting. Third, the heritability and rate of adaptation toward higher upper thermal tolerance observed here may be considered as upper estimates because of the potentially high genetic variance harbored by our parental population where samples from several sites were mixed. While mixing of zebrafish populations often occurs in the wild during monsoon flooding (54, 55), there are likely to be some isolated populations that may have a lower genetic diversity and adaptation potential than our starting population. Finally, and most importantly, the reduced phenotypic variance and decreased acclimation capacity with increasing CTmax observed in our study suggest the existence of a hard-upper limit to thermal tolerance that will lead to an evolutionary plateau similar to those reached in Drosophila selected for increased heat resistance over many generations (12, 56). Overall, the rate of evolution observed in our study is likely higher than what will occur in the wild and, based on this, it seems unlikely that zebrafish, or potentially other tropical fish species, will be able to acutely tolerate temperatures predicted by the end of the century. It is possible that other fish species, especially those living in cooler waters and with wider thermal safety margins, will display higher rates of adaptation than the ones we observed here, and more studies of this kind in a range of species are needed to determine whether slow adaptation of upper thermal tolerance is a general phenomenon.Transgenerational plasticity (e.g., epigenetics) has been suggested to modulate physiological thermal tolerance (57). However, the progressive changes in CTmax observed across generations in our study indicate that these changes were primarily due to genetic changes because effects of transgenerational plasticity are not expected to accumulate across generations. Therefore, the effects of transgenerational plasticity in the adaptation of upper thermal tolerance may be insufficient to mitigate impacts of climate change on zebrafish, yet the potential contribution of transgenerational plasticity is still an open question.By phenotyping more than 20,000 fish over six generations of selection, we show that evolution of upper thermal tolerance is possible in a vertebrate over short evolutionary time. However, the evolutionary potential for increased upper thermal tolerance is low due to the slow rate of adaptation compared to climate warming, as well as the diminishing effect of acclimation as adaptation progresses. Our results thus suggest that fish populations, especially warm water species living close to their thermal limits, may struggle to adapt with the rate at which water temperatures are increasing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号