首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3513篇
  免费   375篇
  国内免费   48篇
耳鼻咽喉   15篇
儿科学   18篇
妇产科学   10篇
基础医学   462篇
口腔科学   57篇
临床医学   319篇
内科学   385篇
皮肤病学   33篇
神经病学   327篇
特种医学   164篇
外国民族医学   1篇
外科学   330篇
综合类   503篇
现状与发展   1篇
一般理论   1篇
预防医学   739篇
眼科学   52篇
药学   312篇
  3篇
中国医学   114篇
肿瘤学   90篇
  2024年   9篇
  2023年   254篇
  2022年   180篇
  2021年   414篇
  2020年   339篇
  2019年   280篇
  2018年   150篇
  2017年   107篇
  2016年   103篇
  2015年   141篇
  2014年   199篇
  2013年   224篇
  2012年   219篇
  2011年   238篇
  2010年   159篇
  2009年   153篇
  2008年   196篇
  2007年   172篇
  2006年   107篇
  2005年   61篇
  2004年   40篇
  2003年   29篇
  2002年   35篇
  2001年   20篇
  2000年   12篇
  1999年   16篇
  1998年   7篇
  1997年   14篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1993年   4篇
  1992年   8篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1977年   2篇
排序方式: 共有3936条查询结果,搜索用时 31 毫秒
1.
《Molecular therapy》2022,30(8):2856-2867
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   
2.
3.
4.
《Clinical neurophysiology》2021,132(6):1312-1320
ObjectiveTo investigate the additional value of EEG functional connectivity features, in addition to non-coupling EEG features, for outcome prediction of comatose patients after cardiac arrest.MethodsProspective, multicenter cohort study. Coherence, phase locking value, and mutual information were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine learning classification models were trained and validated with functional connectivity, EEG non-coupling features, and a combination of these. Neurological outcome was assessed at six months and categorized as “good” (Cerebral Performance Category [CPC] 1–2) or “poor” (CPC 3–5).ResultsWe included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34–56%) at 100% specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0–54%) at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity of 73% (50–77%) at 100% specificity.ConclusionFunctional connectivity measures improve EEG based prediction models for poor outcome of postanoxic coma.SignificanceFunctional connectivity features derived from early EEG hold potential to improve outcome prediction of coma after cardiac arrest.  相似文献   
5.
PurposeMachine-learning (ML) approaches have been repeatedly coupled with raw accelerometry to classify physical activity classes, but the features required to optimize their predictive performance are still unknown. Our aim was to identify appropriate combination of feature subsets and prediction algorithms for activity class prediction from hip-based raw acceleration data.MethodsThe hip-based raw acceleration data collected from 27 participants was split into training (70 %) and validation (30 %) subsets. A total of 206 time- (TD) and frequencydomain (FD) features were extracted from 6-second non-overlapping windows of the signal. Feature selection was done using seven filter-based, two wrapper-based, and one embedded algorithm, and classification was performed with artificial neural network (ANN), support vector machine (SVM), and random forest (RF). For every combination between the feature selection method and the classifiers, the most appropriate feature subsets were found and used for model training within the training set. These models were then validated with the left-out validation set.ResultsThe appropriate number of features for the ANN, SVM, and RF ranged from 20 to 45. Overall, the accuracy of all the three classifiers was higher when trained with feature subsets generated using filter-based methods compared with when they were trained with wrapper-based methods (range: 78.1 %–88 % vs. 66 %–83.5 %). TD features that reflect how signals vary around the mean, how they differ with one another, and how much and how often they change were more frequently selected via the feature selection methods.ConclusionsA subset of TD features from raw accelerometry could be sufficient for ML-based activity classification if properly selected from different axes.  相似文献   
6.
Background  The data visualization literature asserts that the details of the optimal data display must be tailored to the specific task, the background of the user, and the characteristics of the data. The general organizing principle of a concept-oriented display is known to be useful for many tasks and data types. Objectives  In this project, we used general principles of data visualization and a co-design process to produce a clinical display tailored to a specific cognitive task, chosen from the anesthesia domain, but with clear generalizability to other clinical tasks. To support the work of the anesthesia-in-charge (AIC) our task was, for a given day, to depict the acuity level and complexity of each patient in the collection of those that will be operated on the following day. The AIC uses this information to optimally allocate anesthesia staff and providers across operating rooms. Methods  We used a co-design process to collaborate with participants who work in the AIC role. We conducted two in-depth interviews with AICs and engaged them in subsequent input on iterative design solutions. Results  Through a co-design process, we found (1) the need to carefully match the level of detail in the display to the level required by the clinical task, (2) the impedance caused by irrelevant information on the screen such as icons relevant only to other tasks, and (3) the desire for a specific but optional trajectory of increasingly detailed textual summaries. Conclusion  This study reports a real-world clinical informatics development project that engaged users as co-designers. Our process led to the user-preferred design of a single binary flag to identify the subset of patients needing further investigation, and then a trajectory of increasingly detailed, text-based abstractions for each patient that can be displayed when more information is needed.  相似文献   
7.
BackgroundCompared with invasive fractional flow reserve (FFR), coronary CT angiography (cCTA) is limited in detecting hemodynamically relevant lesions. cCTA-based FFR (CT-FFR) is an approach to overcome this insufficiency by use of computational fluid dynamics. Applying recent innovations in computer science, a machine learning (ML) method for CT-FFR derivation was introduced and showed improved diagnostic performance compared to cCTA alone. We sought to investigate the influence of stenosis location in the coronary artery system on the performance of ML-CT-FFR in a large, multicenter cohort.MethodsThree hundred and thirty patients (75.2% male, median age 63 years) with 502 coronary artery stenoses were included in this substudy of the MACHINE (Machine Learning Based CT Angiography Derived FFR: A Multi-Center Registry) registry. Correlation of ML-CT-FFR with the invasive reference standard FFR was assessed and pooled diagnostic performance of ML-CT-FFR and cCTA was determined separately for the following stenosis locations: RCA, LAD, LCX, proximal, middle, and distal vessel segments.ResultsML-CT-FFR correlated well with invasive FFR across the different stenosis locations. Per-lesion analysis revealed improved diagnostic accuracy of ML-CT-FFR compared with conventional cCTA for stenoses in the RCA (71.8% [95% confidence interval, 63.0%–79.5%] vs. 54.8% [45.7%–63.8%]), LAD (79.3 [73.9–84.0] vs. 59.6 [53.5–65.6]), LCX (84.1 [76.0–90.3] vs. 63.7 [54.1–72.6]), proximal (81.5 [74.6–87.1] vs. 63.8 [55.9–71.2]), middle (81.2 [75.7–85.9] vs. 59.4 [53.0–65.6]) and distal stenosis location (67.4 [57.0–76.6] vs. 51.6 [41.1–62.0]).ConclusionIn a multicenter cohort with high disease prevalence, ML-CT-FFR offered improved diagnostic performance over cCTA for detecting hemodynamically relevant stenoses regardless of their location.  相似文献   
8.
BackgroundParkinson’s disease (PD) is a chronic and progressive neurodegenerative disease with no cure, presenting a challenging diagnosis and management. However, despite a significant number of criteria and guidelines have been proposed to improve the diagnosis of PD and to determine the PD stage, the gold standard for diagnosis and symptoms monitoring of PD is still mainly based on clinical evaluation, which includes several subjective factors. The use of machine learning (ML) algorithms in spatial-temporal gait parameters is an interesting advance with easy interpretation and objective factors that may assist in PD diagnostic and follow up.Research questionThis article studies ML algorithms for: i) distinguish people with PD vs. matched-healthy individuals; and ii) to discriminate PD stages, based on selected spatial-temporal parameters, including variability and asymmetry.MethodsGait data acquired from 63 people with PD with different levels of PD motor symptoms severity, and 63 matched-control group individuals, during self-selected walking speed, was study in the experiments.ResultsIn the PD diagnosis, a classification accuracy of 84.6 %, with a precision of 0.923 and a recall of 0.800, was achieved by the Naïve Bayes algorithm. We found four significant gait features in PD diagnosis: step length, velocity and width, and step width variability. As to the PD stage identification, the Random Forest outperformed the other studied ML algorithms, by reaching an Area Under the ROC curve of 0.786. We found two relevant gait features in identifying the PD stage: stride width variability and step double support time variability.SignificanceThe results showed that the studied ML algorithms have potential both to PD diagnosis and stage identification by analysing gait parameters.  相似文献   
9.
Myocardial injury due to ischaemia within 30 days of non-cardiac surgery is prognostically relevant. We aimed to determine the discrimination, calibration, accuracy, sensitivity and specificity of single-layer and multiple-layer neural networks for myocardial injury and death within 30 postoperative days. We analysed data from 24,589 participants in the Vascular Events in Non-cardiac Surgery Patients Cohort Evaluation study. Validation was performed on a randomly selected subset of the study population. Discrimination for myocardial injury by single-layer vs. multiple-layer models generated areas (95%CI) under the receiver operating characteristic curve of: 0.70 (0.69–0.72) vs. 0.71 (0.70–0.73) with variables available before surgical referral, p < 0.001; 0.73 (0.72–0.75) vs. 0.75 (0.74–0.76) with additional variables available on admission, but before surgery, p < 0.001; and 0.76 (0.75–0.77) vs. 0.77 (0.76–0.78) with the addition of subsequent variables, p < 0.001. Discrimination for death by single-layer vs. multiple-layer models generated areas (95%CI) under the receiver operating characteristic curve of: 0.71 (0.66–0.76) vs. 0.74 (0.71–0.77) with variables available before surgical referral, p = 0.04; 0.78 (0.73–0.82) vs. 0.83 (0.79–0.86) with additional variables available on admission but before surgery, p = 0.01; and 0.87 (0.83–0.89) vs. 0.87 (0.85–0.90) with the addition of subsequent variables, p = 0.52. The accuracy of the multiple-layer model for myocardial injury and death with all variables was 70% and 89%, respectively.  相似文献   
10.
Introduction: In early childhood, wheezing due to lower respiratory tract illness is often associated with infection by commonly known respiratory viruses such as respiratory syncytial virus (RSV) and human rhinovirus (RV). How respiratory viral infections lead to wheeze and/or asthma is an area of active research.

Areas covered: This review provides an updated summary of the published information on the development of post-viral induced atopy and asthma and the mechanisms involved. We focus on the contribution of animal models in identifying pathways that may contribute to atopy and asthma following respiratory virus infection, different polymorphisms that have been associated with asthma development, and current options for disease management and potential future interventions.

Expert commentary: Currently there are no prophylactic therapies that prevent infants infected with respiratory viruses from developing asthma or atopy. Neither are there curative therapies for patients with asthma. Therefore, a better understanding of genetic factors and other associated biomarkers in respiratory viral induced pathogenesis is important for developing effective personalized therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号