首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  国内免费   1篇
  完全免费   11篇
  综合类   30篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种 新的加权方法应用到最小二乘支持向量机( LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向 量机(Weighted Least Square Support Vector Machine, WLS-SVM))参数的选择基于LS-SVM的最优参数,根据模型训练误差对参 数进行二次寻优,进一步提高模型精度。利用测试函数验证了改进方法,对提高模型精度有明显效果;并将改进方法应用到实际生 产装置的炉温软测量系统中,也取得了满意的应用效果。  相似文献
2.
近年来越来越多的人工智能技术开始在中药研究领域得到应用并取得令人鼓舞的成果。支持向量机是近十余年发展起来的人工智能技术,包含了最大间隔超平面、Mercer核、凸二次规划、稀疏解和松弛变量等多项技术,它的出现弥补了以往技术的不足并表现出很强的发展与应用潜力。中药现代化研究完全可以借助支持向量机的研究成果开创一片新的天地。尽管如此,支持向量机在中药研究领域的应用仍然不多见,一方面可能与支持向量机理论正处在发展上升的阶段有关,另一方面则可能是由于该项技术在中药研究的这片处女地上埋藏着巨大应用潜力,尚未引起人们的足够重视。总结近年来支持向量机在中药研究领域应用的基础上,讨论目前存在的问题,展望未来的发展趋势,探讨可能的应用方向,并以此激励更多的研究力量参与其中。  相似文献
3.
提出了一种基于2次多项式核函数支持向量机的多步预测控制方法。通过黑箱辨识和线性化技术得到非线性系统的近似模型,根据预测控制机理,最小化滚动时域的二次型目标函数,利用模型算法控制的方法得到控制器的解析输出。通过一个标准预测模型和一个工业用连续搅拌槽式反应器的模型仿真验证了该控制器的性能,仿真结果表明:该控制器有着良好的预测性能。  相似文献
4.
提出了一种基于能量特征的左右手运动想象识别方法,利用快速傅里叶变换分析特定脑电(μ波和β波)的频率分布,然后利用小波分解去噪,再利用小波包分析脑电能量,提取能量特征,最后基于支持向量机(SVM)进行左右手运动想象的识别。本文把能量作为特征的支持向量机(SVM)识别法分别与自适应自回归系数法(AAR)和相同步分析法进行比较。仿真结果表明:在相同样本数据情况下,能量特征作为特征向量的SVM识别准确率明显高于其他2种方法。  相似文献
5.
针对在线手写签名难以提取有效特征的实际情况,提出用小波包分解和单支重构来构造能量特征向量的方法,直接利用各频段成分能量的变化来反映签名的动态特征。给出了衡量各特征识别能力的Fisher准则,并且基于该准则剔除了识别能力差的特征,优化了特征空间。用该方法构造的特征向量能突出反映签名的动态特征。然后采用SVM对签名进行识别。实验证明:采用本文方法识别的正确率高达99.38%,错误拒绝率FRR=0.25%,错误接受率FAR=1.0%,其性能令人满意。  相似文献
6.
针对实际化工生产过程中故障数据缺乏,采用适合小样本问题的支持向量机(SVM)对化工过程稳态故障进行诊断。为了保证在线故障诊断的实时性,消除高维监控数据以及系统噪声对故障诊断的干扰,提出了一种新的基于二进制量子粒子群优化(BQPSO)算法和SVM的故障特征选择方法。仿真实验表明:BQPSO算法具有良好的全局搜索能力,能够快速、准确地搜索到故障特征变量;而基于特征选择的SVM故障诊断方法能可靠地实现对复杂化工过程的在线故障诊断。  相似文献
7.
针对高维输入小波网络的初始参数和网络结构非常复杂且计算量大的问题,提出用支持向量机(SVM)确定小波网络的初始参数和网络结构的方法。首先,使用有监督模糊聚类算法从聚类中抽取模糊规则,然后对每一个规则的后件使用支持向量机方法确定小波网络的结构和初始参数,最后采用梯度下降方法调节模糊小波网络中的参数,使得模糊小波网络输出与期望输出之间的误差较小。仿真结果表明:该算法与传统的模糊神经网络(FNN)相比显著提高了分类精度。  相似文献
8.
提出一种新颖的基于特征抽取的异常检测方法,应用主分量分析(PCA)和核主分量分析(KPCA)抽取入侵特征,再应用支持向量机(SVM)检测入侵。其中PCA对输入特征做线性变换,而KPCA通过核函数进行非线性变换。利用KDD 99数据集,将PCA-SVM、KPCA-SVM与SVM、PCR、KPCR进行比较,结果显示:在不降低分类器性能的情况下,特征抽取方法能对输入数据有效降维。在各种方法中,KPCA与SVM的结合能得到最优入侵检测性能。  相似文献
9.
分析了增量学习过程中支持向量和非支持向量的转化情况。在此基础上提出一种误分点回溯SVM增量算法,该算法先找出新增样本中被误分的样本,然后在原样本集寻找距误分点最近的样本作为训练集的一部分,重新构建分类器,这样能有效保留样本的分类信息。实验结果表明:该算法比传统的支持向量机增量算法有更高的分类精度。  相似文献
10.
针对与故障不相关的变量会影响分类器性能,从而导致故障诊断正确率下降,提出一种将离散粒子群算法(PSO)与支持向量机(SVM)相结合寻找故障特征变量的优化算法。该算法实现了数据降维和故障特征保留,有效地提高了故障诊断性能。基于连续搅拌釜式反应器(CSTR)的仿真实例验证了该算法古白有诗性.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号