首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
基础医学   54篇
临床医学   1篇
内科学   5篇
综合类   10篇
预防医学   7篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   11篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
1.
Shrimp hemocyte iridescent virus (SHIV), which was first identified in white leg shrimp (Litopenaeus vannamei) in China in 2014, can cause extensive shrimp mortality and major economic losses in the shrimp farming industry in China. In this study, a novel real-time isothermal recombinase polymerase amplification (RPA) assay was developed using a TwistAmp exo kit for SHIV detection. First, five primers and a probe were designed for the major capsid protein gene (GenBank: KY681039.1) according to the TwistDx manual; next, the optimal primers were selected by a comparison experiment. The primers and probe were specific for SHIV and did not react with shrimp white spot syndrome virus (WSSV), shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV), shrimp enterocytozoon hepatopenaei (EHP), and macrobrachium rosenbergii nodavirus (MrNV) samples, as well as pathogens of acute hepatopancreatic necrosis disease (AHPND). The RPA assay reached a detection limit of 11 copies per reaction according to probit regression analysis. In addition, RPA assay detected the positive plasmid samples at concentration of 1000 copies/μL within 16.04 ± 0.72 min at a single low operation temperature (39 °C). The results proved that the proposed RPA method was an accurate, sensitive, affordable, and rapid detection tool that can be suitably applied for the diagnosis of SHIV in field conditions and in resource-poor settings.  相似文献   
2.
As vaccine-elicited antibodies have now been associated with HIV protective efficacy, a thorough understanding of mucosal and systemic B-cell development and maturation is needed. We phenotyped mucosal memory B-cells, investigated isotype expression and homing patterns, and defined plasmablasts and plasma cells at three mucosal sites (duodenum, jejunum and rectum) in rhesus macaques, the commonly used animal model for pre-clinical vaccine studies. Unlike humans, macaque mucosal memory B-cells lacked CD27 expression; only two sub-populations were present: naïve (CD21+CD27) and tissue-like (CD21CD27) memory. Similar to humans, IgA was the dominant isotype expressed. The homing markers CXCR4, CCR6, CCR9 and α4β7 were differentially expressed between naïve and tissue-like memory B-cells. Mucosal plasmablasts were identified as CD19+CD20+/−HLA-DR+Ki-67+IRF4+CD138+/− and mucosal plasma cells as CD19+CD20HLA-DRKi-67IRF4+CD138+. Both populations were CD39+/−CD27. Plasma cell phenotype was confirmed by spontaneous IgA secretion by ELISpot of positively-selected cells and J-chain expression by real-time PCR. Duodenal, jejunal and rectal samples were similar in B-cell memory phenotype, isotype expression, homing receptors and plasmablast/plasma cell distribution among the three tissues. Thus rectal biopsies adequately monitor B-cell dynamics in the gut mucosa, and provide a critical view of mucosal B-cell events associated with development of vaccine-elicited protective immune responses and SIV/SHIV pathogenesis and disease control.  相似文献   
3.
Antibodies have a long history in antiviral therapy, but until recently, they have not been actively pursued for HIV-1 due to modest potency and breadth of early human monoclonal antibodies (MAbs) and perceived insurmountable technical, financial, and logistical hurdles. Recent advances in the identification and characterization of MAbs with the ability to potently neutralize diverse HIV-1 isolates have reinvigorated discussion and testing of these products in humans, since new broadly neutralizing MAbs (bnMAbs) are more likely to be effective against worldwide strains of HIV-1. In animal models, there is abundant evidence that bnMAbs can block infection in a dose-dependent manner, and the more potent bnMAbs will allow clinical testing at infusion doses that are practically achievable. Moreover, recent advances in antibody engineering are providing further improvements in MAb potency, breadth, and half-life. This review summarizes the current state of the field of bnMAb protection in animal models as well as a review of variables that are critical for antiviral activity. Several bnMAbs are currently in clinical testing, and we offer perspectives on their use as pre-exposure prophylaxis (PrEP), potential benefits beyond sterilizing immunity, and a discussion of future approaches to engineer novel molecules.  相似文献   
4.
目的:建立一种简单、经济、高效地培养恒河猴外周血单核巨噬细胞(monocyte-derived macrophage,MDM)的方法。方法:用肝素钠抗凝管采集健康成年中国恒河猴(Macaca mulatta)全血,密度梯度离心法分离外周血单核细胞(peripheral blood mononuclear cells, PBMCs)。同时用无抗凝剂采血管采集同一只猴外周血,自凝后分离血清。将猴PBMCs置于CELLBIND Surface的96孔(0.8×106个细胞/孔)或48孔培养板(3×106个细胞/孔)中,用含不同百分比的猴自体血清或胎牛血清(fetal calf serum,FCS)的RPMI 1640培养液培养24h后洗弃未贴壁细胞,加入含有猴自体血清或FCS的新鲜培养基继续培养7天后观察细胞形态学。分化良好的猴单核巨噬细胞贴壁能力强,占据板底大部分区域。胞体形态多样,多数呈长梭形。用巨噬细胞标记受体(CD14)抗体染色判断细胞纯度。并用细菌内毒素(LPS)刺激分化的巨噬细胞,检测巨噬细胞炎性因子的表达。此外,用猴艾滋病毒(SIVmac17E-Br、SIVmac251)和人-猴嵌合体艾滋病毒(SHIV KU-1)感染分化良好的猴巨噬细胞,检测病毒在猴巨噬细胞中的复制。结果:在含2%猴自体血清的RPMI 1640培养条件下,大多数(>85%)猴单核细胞能在24h内贴壁,体外分化5-7天后,猴巨噬细胞纯度大于96%。相比而言,含较高浓度(4%,8%或10%)猴自体血清或FCS的RPMI 1640 培养基对猴单核细胞的贴壁和分化作用较差。分化良好的猴巨噬细胞对LPS刺激敏感,可产生多种巨噬细胞炎性因子。此外,这些细胞对SIV或SHIV均易感,产生感染性病毒。结论:含2%猴自体血清的RPMI 1640培养基适于原代猴单核细胞的贴壁和分化。该方法简单、花费少,无需生长因子,且分化效果好,是培养猴艾滋病毒及开展相关免疫学实验的重要手段。  相似文献   
5.
In an earlier study, our group vaccinated rhesus macaques with vesicular stomatitis virus (VSV) vectors expressing Gag, Pol, and Env proteins from a hybrid simian/human immunodeficiency virus (SHIV). This was followed by a single boost with modified vaccinia virus Ankara (MVA) vectors expressing the same proteins. Following challenge with SHIV89.6P, vaccinated animals cleared challenge virus RNA from the blood by day 150 and maintained normal CD4 T cell counts for 8 months. Here we report on the long-term (>5-year post-challenge) status of these animals and the immunological correlates of long-term protection. Using real-time PCR, we found that viral DNA in peripheral blood mononuclear cells (PBMCs) of the vaccinees declined continuously and fell to below detection (<5 copies/105 cells) by approximately 3 years post-challenge. SHIV DNA was also below the limit of detection in the lymph nodes of two of the four animals at 5 years post-challenge. We detected long-term persistence of multi-functional Gag-specific CD8+ T cells in both PBMCs and lymph nodes of the two protected animals with the Mamu A*01+ MHC I allele. All animals also maintained SHIV89.6P neutralizing antibody titers for 5 years. Our results show that this vaccine approach generates solid, long-term control of SHIV infection, and suggest that it is mediated by both cytotoxic T lymphocytes and neutralizing antibody.  相似文献   
6.
Rhesus macaques can be readily infected with chimeric simian-human immunodeficiency viruses (SHIV) as a suitable virus challenge system for testing the efficacy of HIV vaccines. Three Chinese-origin rhesus macaques (ChRM) were inoculated intravenously (IV) with SHIVC109P4 in a rapid serial in vivo passage. SHIV recovered from the peripheral blood of the final ChRM was used to generate a ChRM-adapted virus challenge stock. This stock was titrated for the intrarectal route (IR) in 8 ChRMs using undiluted, 1:10 or 1:100 dilutions, to determine a suitable dose for use in future vaccine efficacy testing via repeated low-dose IR challenges. All 11 ChRMs were successfully infected, reaching similar median peak viraemias at 1–2 weeks post inoculation but undetectable levels by 8 weeks post inoculation. T-cell responses were detected in all animals and Tier 1 neutralizing antibodies (Nab) developed in 10 of 11 infected ChRMs. All ChRMs remained healthy and maintained normal CD4+ T cell counts. Sequence analyses showed >98% amino acid identity between the original inoculum and virus recovered at peak viraemia indicating only minimal changes in the env gene. Thus, while replication is limited over time, our adapted SHIV can be used to test for protection of virus acquisition in ChRMs.  相似文献   
7.
目的 体外制备SHIV1157ipd3N4病毒中国恒河猴细胞适应株,在细胞水平和中国恒河猴体内评价其生物学特性.方法 用SHIV1157ipd3N4病毒阴道感染中国恒河猴,在血浆病毒载量高峰期采血分离外周血单核淋巴细胞(PBMCs),与正常中国恒河猴PBMCs共培养.定期测定培养液中的P24抗原水平.当病毒复制达高峰期时收集培养上清,分装并冻存.测定病毒RNA载量、P24抗原浓度和TCID50.静脉感染中国恒河猴,研究该批次SHIV1157ipd3N4在体内的病毒学、免疫学指标变化及变异情况,分析其基本的生物学特性.结果 本研究共制备了243 mL SHIV1157ipd3N4病毒原液,gp120序列分析表明病毒未发生变异,CCR5的嗜性也未发生改变.病毒载量为1.586×108 copies/mL,P24抗原水平为1.16×103 pg/mL,TZM-bl细胞测定病毒的TCID50为3.16×103/mL.1 mL SHIV1157ipd3N4静脉成功感染中国恒河猴G1004V,高峰期病毒载量达到1.0×106 copies/mL以上.结论 此次制备的SHIV1157ipd3N4细胞适应株生物学特性稳定,适合作为毒种库构建SHIV1157ipd3N4/中国恒河猴模型.  相似文献   
8.
Macaques were immunized with SF162 Env-based gp140 immunogens and challenged simultaneously with the CCR5-tropic homologous SHIV(SF162P4) and the CXCR4-tropic heterologous SHIV(SF33A) viruses. Both mock-immunized and immunized animals became dually infected. Prior immunization preferentially reduced the viral replication of the homologous virus during primary infection but the relative replication of the two coinfecting viruses during chronic infection was unaffected by prior immunization, despite the fact that five of six immunized animals maintained a significantly lower overall viral replication that the control animals. Neutralizing antibodies participated in controlling the replication of SHIV(SF162P4), but not that of SHIV(SF33A). Dual infection resulted in the emergence and predominance within the circulating CCR5 virus pool, of a variant with a distinct neutralization phenotype. The signature of this variant was the presence of three amino acid changes in gp120, two of which were located in the receptor and coreceptor binding sites. Also, a significant fraction of the viruses circulating in the blood, as early as two weeks post-infection, was recombinants and prior immunization did not prevent their emergence. These findings provide new insights into the dynamic interaction of CCR5- and CXCR4-tropic HIV isolates that are potentially relevant in better understanding HIV-mediated pathogenesis.  相似文献   
9.
Six morphine-exposed and 3 control male Indian rhesus macaques were intravenously inoculated with mixture of SHIV(KU), SHIV(89.6)P and SIV/17E-Fr. These animals were followed for a period of 56 weeks in order to determine CD4 and CD8 profile, viral loads in plasma and cerebrospinal fluid (CSF), relative distribution of 3 pathogenic viruses in blood and brain, binding as well neutralizing antibody levels and cellular immune responses. Both morphine-exposed and control macaques showed a precipitous loss of CD4+ T cells; control animals, however, showed a greater tendency to recover these cells than did their morphine-exposed counterparts. The plasma and CSF viral loads were significantly higher in morphine-exposed group than those in the control group. Four morphine-exposed animals succumbed to SIV/SHIV-induced AIDS at week 18, 19, 20 and 51; post-infection with neurological disorders was found in 3 of the 4 animals. At the end of the 56-week observation period, 2 morphine-exposed and 3 control animals were still alive. All 3 viruses replicated in the blood of both morphine-exposed and control macaques, but the cerebral compartment showed a selection phenomenon; only SIV/17E-Fr and SHIV(KU) successfully crossed the blood brain barrier (BBB). The morphine-exposed macaques further favored viral migration through the blood brain barrier (BBB). SIV/17E-Fr crossed the BBB within 2 weeks in both morphine-exposed and control macaques, whereas SHIV(KU) crossed the BBB more rapidly in morphine-exposed than in control macaques. Three morphine-exposed macaques (euthanized at weeks 18, 19 and 20) did not develop cellular or humoral immune responses, whereas the other 3 morphine-exposed and 3 control macaques developed both cellular and humoral immune responses.  相似文献   
10.
We have previously reported that concanavalin A-immobilized polystyrene nanospheres (Con A-NS) could efficiently capture HIV-1 particles and that intranasal immunization with inactivated HIV-1-capturing nanospheres (HIV-NS) induced vaginal anti-HIV-1 IgA antibody response in mice. In this study, to evaluate the protective effect of immunization, each three macaques was intranasally immunized with Con A-NS or inactivated simian/human immunodeficiency virus KU-2-capturing nanospheres (SHIV-NS) and then intravaginally challenged with a pathogenic virus, SHIV KU-2. After a series of six immunizations, vaginal anti-HIV-1 gp120 IgA and IgG antibodies were detected in all SHIV-NS-immunized macaques. After intravaginal challenge, one of the three macaques in each of the Con A-NS- and SHIV-NS-immunized groups was infected. Plasma viral RNA load of infected macaque in SHIV-NS-immunized macaques was substantially less than that in unimmunized control macaque and reached below the detectable level. However, it could not be determined whether intranasal immunization with SHIV-NS is effective in giving complete protection against intravaginal challenge. To explore the effect of the SHIV-NS vaccine, the remaining non-infected macaques were rechallenged intravenously with SHIV KU-2. After intravenous challenge, all macaques became infected. However, SHIV-NS-immunized macaques had lower viral RNA loads and higher CD4(+) T cell counts than unimmunized control macaques. Plasma anti-HIV-1 gp120 IgA and IgG antibodies were induced more rapidly in the SHIV-NS-immunized macaques than in the controls. The rapid antibody responses having neutralizing activity might contribute to the clearance of the challenge virus. Thus, SHIV-NS-immunized macaques exhibited partial protection to vaginal and systemic challenges with SHIV KU-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号