首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2864篇
  免费   320篇
  国内免费   116篇
耳鼻咽喉   7篇
儿科学   48篇
妇产科学   21篇
基础医学   196篇
口腔科学   88篇
临床医学   622篇
内科学   185篇
皮肤病学   9篇
神经病学   176篇
特种医学   44篇
外科学   109篇
综合类   251篇
预防医学   463篇
眼科学   25篇
药学   533篇
中国医学   464篇
肿瘤学   59篇
  2024年   4篇
  2023年   70篇
  2022年   68篇
  2021年   122篇
  2020年   117篇
  2019年   119篇
  2018年   132篇
  2017年   145篇
  2016年   145篇
  2015年   149篇
  2014年   209篇
  2013年   327篇
  2012年   196篇
  2011年   171篇
  2010年   112篇
  2009年   112篇
  2008年   130篇
  2007年   103篇
  2006年   112篇
  2005年   90篇
  2004年   80篇
  2003年   64篇
  2002年   56篇
  2001年   51篇
  2000年   61篇
  1999年   46篇
  1998年   39篇
  1997年   25篇
  1996年   35篇
  1995年   28篇
  1994年   27篇
  1993年   19篇
  1992年   12篇
  1991年   25篇
  1990年   8篇
  1989年   7篇
  1988年   9篇
  1987年   10篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   9篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1971年   2篇
排序方式: 共有3300条查询结果,搜索用时 16 毫秒
1.
2.
3.
摘要:目的对尿液 10项肾损伤标志物检测试剂进行性能评价,并评估其临床适用性。方法对北京利德曼公司尿液a1 微球蛋白(u-a|MG)、总蛋白(u-TP)、免疫球蛋白G(u-IgG) 、微量清蛋白(u-Alb)、中性粒细胞明胶酶相关脂质运载蛋白(u-NGAL)、半胱氨酸蛋白酶抑制剂C(u-CysC).视黄醇结合蛋白(u-RBP)、β2微球蛋白(u-β2MG)、N-乙酰-β-D-氨基葡萄糖苷酶(u-NAG).、转铁蛋白(u-Trf)检测试剂盒进行性能评价。正确度和精密度验证参考美国临床和实验室标准协会(CLSI)EP15-A3,验证物质采用ERM-DA470k、ERM-DA471、B2M-NIBSC等参考物质及纯度物质;线性验证参考CLSI EP06;抗干扰能力参考CISI EP07;不同检测系统间比对参考CISI EP09。结果正确度方面,10 项标志物检测试剂测定标准物质在低值、中值、高值的偏倚分别为-2.69% ~4.67%、-3.60% ~3.33% .-2.38% ~3.02%;不精密度方面,重复性以不精密度表示,在低值和高值处分别为1.90%~5.43%、0.63% ~2.42%,室内不精密度为2.27%~5.63%、1.09%~3.41%,均满足临床要求;10项尿液标志物线性范围在0.06~4.40 mg/L至21.83~2 146.77 mg/L之间。抗干扰方面,u-1 MG、u-Alb、u-β2MG、u-Trf 、u-CysC、u-NAG分别在血红蛋白终浓度≤8 g/L、≤8 g/L、≤4 g/L、≤4 g/L、≤2g/L、≤1 g/L时,未受到明显干扰(百分偏差≤+ 10%) ,而u-TP、u-IgG、 u-RBP、u-NGAL在血红蛋白终浓度≥0.125 g/L时即受干扰。不同检测系统间偏差超出临床允许范围。结论尿液 10项肾损伤标志物的正确度、精密度、线性范围和抗血红蛋白干扰能力满足临床需要,不同检测系统间标志物测量结果可比性欠佳。  相似文献   
4.
5.
6.
Amorphous silica that was extracted from rice husk was used to synthesize the magMCM-41 mesoporous silica. This was then functionalized by the APTMS group in order to produce NH2-magMCM-41 as a novel and low–cost adsorbent. The XRD, VSM, N2 adsorption–desorption, FT–IR, TGA, SEM and TEM analyses were utilized to characterize the produced materials. In order to optimize the adsorption of the Pb(II) ions, the RSM (response surface methodology) was applied by using the synthesized adsorbent in aqueous solutions. A rotatable CCD (central composite design) was adopted to carry out the experiments and RSM was used to analyze them. Three independent factors namely, initial solution pH (3–7), adsorbent dosage (0.1–2 g L?1), and initial Pb(II) concentration (15–150 mg L?1) were used to investigate the removal procedure. According to the obtained results, the initial solution pH of 5.22, adsorbent dosage of 0.1 g L?1, and initial Pb(II) concentration of 150 mg L?1 were considered as the optimum conditions with 64.32% removal of Pb(II) and an adsorption capacity of 540.64 mg g?1. The maximum removal efficiency of Pb(II) ions was found to be 96.76%. The Sips isotherm model represents a better correlation with equilibrium data. It was reported by the kinetic study that data taken from the experiments fitted better to the pseudo–second–order model compared to the pseudo–first–order and intraparticle diffusion models. Finally, according to the thermodynamic study, the removal process strongly depends on temperature, which indicates an exothermic behavior and spontaneous nature of the adsorption.  相似文献   
7.

Background

Payers frequently rely on budget impact model (BIM) results to help determine drug coverage policy and its effect on their bottom line. It is unclear whether BIMs typically overestimate or underestimate real-world budget impact.

Objective

We examined how different modeling assumptions influenced the results of 6 BIMs from the Institute for Clinical and Economic Review (ICER).

Study Design

Retrospective analysis of pharmaceutical sales data.

Methods

From ICER reports issued before 2016, we collected estimates of 3 BIM outputs: aggregate therapy cost (ie, cost to treat the patient population with a particular therapy), therapy uptake, and price. We compared these against real-world estimates that we generated using drug sales data. We considered 2 classes of BIM estimates: those forecasting future uptake of new agents, which assumed “unmanaged uptake,” and those describing the contemporaneous market state (ie, estimates of current, managed uptake and budget impact for compounds already on the market).

Results

Differences between ICER's estimates and our own were largest for forecasted studies. Here, ICER's uptake estimates exceeded real-world estimates by factors ranging from 7.4 (sacubitril/valsartan) to 54 (hepatitis C treatments). The “unmanaged uptake” assumption (removed from ICER's approach in 2017) yields large deviations between BIM estimates and real-world consumption. Nevertheless, in some cases, ICER's BIMs that relied on current market estimates also deviated substantially from real-world sales data.

Conclusions

This study highlights challenges with forecasting budget impact. In particular, assumptions about uptake and data source selection can greatly influence the accuracy of results.  相似文献   
8.
9.
10.
Six Sigma and Lean are two quality improvement methodologies. The Lean Six Sigma methodology is applicable to repetitive procedures. Therefore, the use of this methodology in the health-care arena has focused mainly on areas of business operations, throughput, and case management and has focused on efficiency outcomes. After the revision of methodology, the paper presents a brief clinical example of the use of Lean Six Sigma as a quality improvement method in the reduction of the complications during and after lobectomies. Using Lean Six Sigma methodology, the multidisciplinary teams could identify multiple modifiable points across the surgical process. These process improvements could be applied to different surgical specialties and could result in a measurement, from statistical point of view, of the surgical quality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号