首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   11篇
  国内免费   3篇
妇产科学   1篇
基础医学   17篇
临床医学   7篇
内科学   75篇
神经病学   3篇
外科学   9篇
综合类   14篇
预防医学   7篇
药学   54篇
中国医学   11篇
肿瘤学   8篇
  2023年   7篇
  2022年   6篇
  2021年   9篇
  2020年   17篇
  2019年   15篇
  2018年   11篇
  2017年   10篇
  2016年   7篇
  2015年   9篇
  2014年   17篇
  2013年   15篇
  2012年   14篇
  2011年   11篇
  2010年   10篇
  2009年   12篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
1.
《药学学报(英文版)》2023,13(2):559-576
Farnesoid X receptor (FXR) is widely accepted as a promising target for various liver diseases; however, panels of ligands in drug development show limited clinical benefits, without a clear mechanism. Here, we reveal that acetylation initiates and orchestrates FXR nucleocytoplasmic shuttling and then enhances degradation by the cytosolic E3 ligase CHIP under conditions of liver injury, which represents the major culprit that limits the clinical benefits of FXR agonists against liver diseases. Upon inflammatory and apoptotic stimulation, enhanced FXR acetylation at K217, closed to the nuclear location signal, blocks its recognition by importin KPNA3, thereby preventing its nuclear import. Concomitantly, reduced phosphorylation at T442 within the nuclear export signals promotes its recognition by exportin CRM1, and thereby facilitating FXR export to the cytosol. Acetylation governs nucleocytoplasmic shuttling of FXR, resulting in enhanced cytosolic retention of FXR that is amenable to degradation by CHIP. SIRT1 activators reduce FXR acetylation and prevent its cytosolic degradation. More importantly, SIRT1 activators synergize with FXR agonists in combating acute and chronic liver injuries. In conclusion, these findings innovate a promising strategy to develop therapeutics against liver diseases by combining SIRT1 activators and FXR agonists.  相似文献   
2.
3.
目的建立基于报告基因法的高通量筛选细胞模型,用来发现PXR、FXR和LXRα受体激动剂。方法利用Real-time定量PCR方法比较HEK293、Hep G2和LS174T细胞中内源性核受体PXR、FXR和LXRα的表达量,将p SG5-h PXR和p GL3-XREM-CYP3A4、p EGFP-N3-h FXR和EcRETK-Luc、p CMX-FLAG-h LXRα和p GL3-XREM-CYP3A4等质粒分别共转染到工具细胞中,优化共转染比例,并考察阳性药与萤光素酶报告基因表达强度的量效关系、模型特异性和稳定性。结果 1根据Real-time定量PCR结果,模型选用低表达PXR、FXR和LXRα的HEK293细胞作为工具细胞;2根据不同共转染比例对报告基因活性的结果,PXR、FXR和LXRα报告基因药物筛选模型的报告基因和过表达质粒比例,最终分别选择1∶1、2∶1和2∶1;3模型中,报告基因活性均与相应阳性药物(PXR/Rif、FXR/CDCA和LXRα/T0901317)呈剂量依赖性增长;4仅PXR激动剂Rif、FXR激动剂CDCA和LXRα激动剂T0901317可分别明显增加相应筛选模型的报告基因活性,分别重复5次试验后,计算得Z'值分别为0.58、0.66和0.63。结论该研究建立的PXR、FXR和LXRα激动剂高通量筛选模型,具有良好的特异性和稳定性,适用于对PXR、FXR和LXRα受体激动剂的筛选,进而开发以核受体作为药物靶点的药物。  相似文献   
4.
Bile acids (BAs) traversing the enterohepatic circulation exert several important metabolic effects. Their hepatic synthesis, controlled by the enzyme cholesterol 7alpha-hydroxylase (CYP7A1), has a unique diurnal variation in man. Here we provide evidence that the transintestinal flux of BAs regulates serum levels of intestinal fibroblast growth factor 19 (FGF19) that in turn modulate BA production in human liver. Basal FGF19 levels varied by 10-fold in normal subjects, and were reduced following treatment with a BA-binding resin and increased upon feeding the BA chenodeoxycholic acid. Serum FGF19 levels exhibited a pronounced diurnal rhythm with peaks occurring 90-120 min after the postprandial rise in serum BAs. The FGF19 peaks in turn preceded the declining phase of BA synthesis. The diurnal rhythm of serum FGF19 was abolished upon fasting. We conclude that, in humans, circulating FGF19 has a diurnal rhythm controlled by the transintestinal BA flux, and that FGF19 modulates hepatic BA synthesis. Through its systemic effects, circulating FGF19 may also mediate other known BA-dependent effects on lipid and carbohydrate metabolism.  相似文献   
5.
6.
Introduction: Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease.

Areas covered: Following a summary of FXR’s physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date.

Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.  相似文献   

7.
8.
9.
Background and study aimsTo identify the roles and interaction of farnesoid X receptor (FXR) and peroxisome proliferator activated receptors (PPARs) in Non-alcoholic fatty liver disease (NAFLD) pathogenesis.Material and Methods16 C57/BL male FXR knockout (KO) mice and sex- and age-matched C57/BL wild type mice were received either standard rodent chow or high-fat and sucrose diet (Blank control, NAFLD, FXR KO and FXR KO NAFLD) for 8 weeks. After that, all mice were sacrificed. Liver tissues and blood samples were collected for laboratory and RT-PCR examination.ResultsNAFLD, FXR KO and FXR KO NAFLD mouse models were successful established. Compared with blank control, FXR and PPAR-α mRNA expression decreased significantly (P < 0.05), PPAR-β expression increased slightly (P > 0.05), PPAR-γ expression increased significantly in NAFLD (P < 0.05). Slight increased PPAR-α mRNA expression (P > 0.05) and markedly decreased PPAR-β and PPAR-γ expression (P < 0.05) were found in FXR KO. Compared with FXR KO group, there was a slight increase in PPAR-αand PPAR-βmRNA expression (P > 0.05) and significant increase in PPAR-γ expression (P < 0.05) in FXR KO NAFLD group. Comparison with NAFLD, PPAR-α mRNA expression increased slightly (P > 0.05), PPAR-β and PPAR-γ expression decreased significantly (P < 0.05) in FXR KO NAFLD.ConclusionFXR and PPARs interaction may play important roles in NAFLD pathogenesis.  相似文献   
10.
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号