首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
基础医学   5篇
内科学   1篇
神经病学   8篇
外科学   1篇
药学   8篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
排序方式: 共有23条查询结果,搜索用时 19 毫秒
1.
The BTBR T+tf/J (BTBR) strain is an inbred strain of mice that displays prominent social deficits and repetitive behaviors analogous to the defining symptoms of autism, along with complete congenital agenesis of the corpus callosum (CC). The BTBR strain is genetically distant from the widely used C57BL/6J (B6) strain, which exhibits high levels of sociability, a low level of repetitive behaviors, and an intact CC. Emerging evidence implicates compromised interhemispherical connectivity in some cases of autism. We investigated the hypothesis that the disconnection of CC fiber tracts contributes to behavioral traits in mice that are relevant to the behavioral symptoms of autism. Surgical lesion of the CC in B6 mice at postnatal day 7 had no effect on juvenile play and adult social approaches, and did not elevate repetitive self-grooming. In addition, LP/J, the strain that is genetically closest to the BTBR strain but has an intact CC, displayed juvenile play deficits and repetitive self-grooming similar to those seen in BTBR mice. These corroborative results offer evidence against the hypothesis that the CC disconnection is a primary cause of low sociability and a high level of repetitive behaviors in inbred mice. Our findings indicate that genes mediating other aspects of neurodevelopment, including those whose mutations underlie more subtle disruptions in white matter pathways and connectivity, are more likely to contribute to the aberrant behavioral phenotypes in the BTBR mouse model of autism.  相似文献   
2.
Phenylketonuria (PKU), an autosomal recessive disease with phenylalanine hydroxylase (PAH) deficiency, was recently shown to be a protein misfolding disease with loss-of-function. It can be treated by oral application of the natural PAH cofactor tetrahydrobiopterin (BH4) that acts as a pharmacological chaperone and rescues enzyme function in vivo. Here we identified Pahenu1/2 bearing a mild and a severe mutation (V106A/F363S) as a new mouse model for compound heterozygous mild PKU. Although BH4 treatment has become established in clinical routine, there is substantial lack of knowledge with regard to BH4 pharmacodynamics and the effect of the genotype on the response to treatment with the natural cofactor. To address these questions we applied an elaborate methodological setup analyzing: (i) blood phenylalanine elimination, (ii) blood phenylalanine/tyrosine ratios, and (iii) kinetics of in vivo phenylalanine oxidation using 13C-phenylalanine breath tests. We compared pharmacodynamics in wild-type, Pahenu1/1, and Pahenu1/2 mice and observed crucial differences in terms of effect size as well as effect kinetics and dose response. Results from in vivo experiments were substantiated in vitro after overexpression of wild-type, V106A, and F263S in COS-7 cells. Pharmacokinetics did not differ between Pahenu1/1 and Pahenu1/2 indicating that the differences in pharmacodynamics were not induced by divergent pharmacokinetic behavior of BH4. In conclusion, our findings show a significant impact of the genotype on the response to BH4 in PAH deficient mice. This may lead to important consequences concerning the diagnostic and therapeutic management of patients with PAH deficiency underscoring the need for individualized procedures addressing pharmacodynamic aspects.  相似文献   
3.
BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals.  相似文献   
4.
Autism spectrum disorders (ASD) represent a class of neurodevelopmental disorders characterized by impairments in social interaction, verbal and non-verbal communication, as well as restricted interests and repetitive behavior. This latter class of symptoms often includes features such as compulsive behaviors and resistance to change. The BTBR T+ tf/J mouse strain has been used as an animal model to investigate the social communication and restricted interest features in ASD. Less is known about whether this mouse strain models cognitive flexibility deficits also observed in ASD. The present experiment investigated performance of BTBR T+ tf/J and C57BL/6J on two different spatial reversal learning tests (100% accurate feedback and 80/20 probabilistic feedback), as well as marble burying and grooming behavior. BTBR T+ tf/J and C57BL/6J mice exhibited similar performance on acquisition and reversal learning with 100% accurate feedback. BTBR T+ tf/J mice were impaired in probabilistic reversal learning compared to that of C57BL/6J mice. BTBR T+ tf/J mice also displayed increased stereotyped repetitive behaviors compared to that of C57BL/6J mice as shown by increased marble burying and grooming behavior. The present findings indicate that BTBR T+ tf/J mice exhibit similar features related to “insistence on sameness” in ASD that include not only stereotyped repetitive behaviors, but also alterations in behavioral flexibility. Thus, BTBR T+ tf/J mice can serve as a model to understand the neural mechanisms underlying alterations in behavioral flexibility, as well as to test potential treatments in alleviating these symptoms.  相似文献   
5.
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism.  相似文献   
6.
Autism spectrum disorders (ASD) are a group of disorders characterized by core behavioral features including stereotyped interests, repetitive behaviors and impairments in communication and social interaction. In addition, widespread changes in the immune systems of individuals with ASD have been identified, in particular increased evidence of inflammation in the periphery and central nervous system. While the etiology of these disorders remains unclear, it appears that multiple gene and environmental factors are involved. The need for animal models paralleling the behavioral and immunological features of ASD is paramount to better understand the link between immune system dysregulation and behavioral deficits observed in these disorders. As such, the asocial BTBR mouse strain displays both ASD relevant behaviors and persistent immune dysregulation, providing a model system that has and continues to be instructive in understanding the complex nature of ASD.  相似文献   
7.
8.
Autism spectrum disorders (ASD) affect approximately 1 in 150 children across the U.S., and are characterized by abnormal social actions, language difficulties, repetitive or restrictive behaviors, and special interests. ASD include autism (autistic disorder), Asperger Syndrome, and Pervasive Developmental Disorder not otherwise specified (PDD-NOS or atypical autism). High-functioning individuals may communicate with moderate-to-high language skills, although difficulties in social skills may result in communication deficits. Low-functioning individuals may have severe deficiencies in language, resulting in poor communication between the individual and others. Behavioral intervention programs have been developed for ASD, and are frequently adjusted to accommodate specific individual needs. Many of these programs are school-based and aim to support the child in the development of their skills, for use outside the classroom with family and friends. Strides are being made in understanding the factors contributing to the development of ASD, particularly the genetic contributions that may underlie these disorders. Mutant mouse models provide powerful research tools to investigate the genetic factors associated with ASD and its co-morbid disorders. In support, the BTBR T+tf/J mouse strain incorporates ASD-like social and communication deficits and high levels of repetitive behaviors. This commentary briefly reviews the reciprocal relationship between observations made during evidence-based behavioral interventions of high- versus low-functioning children with ASD and the accumulating body of research in autism, including animal studies and basic research models. This reciprocity is one of the hallmarks of the scientific method, such that research may inform behavioral treatments, and observations made during treatment may inform subsequent research.  相似文献   
9.
Polyunsaturated fatty acids (PUFAs) are one of the main cellular building blocks, and dietary changes in PUFA composition are proposed as a potential route to influence brain development. For example, initial studies indicated that there is a relation between blood omega-6(n-6)/omega-3(n-3) PUFA ratios and neurodevelopmental disease diagnosis. To study the consequences of dietary n-6/n-3 PUFA ratio changes, we investigated the impact of a n-3 supplemented and n-3 deficient diet in developing BTBR T?+?Itpr3tf/J (BTBR) – a mouse inbred strain displaying Autism Spectrum Disorder (ASD)-like symptomatology - and control C57BL/6J mice. This study showed that pre- and postnatal changed dietary n-6/n-3 ratio intake has a major impact on blood and brain PUFA composition, and led to delayed physical development and puberty onset in both strains. The PUFA induced developmental delay did not impact adult cognitive performance, but resulted in reduced social interest, a main ASD behavioral feature. Thus, both chronic dietary n-3 PUFA supplementation and depletion may not be beneficial.  相似文献   
10.
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that displays robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including low social interactions, reduced vocalizations in social settings, and high levels of repetitive self-grooming. Autism-relevant phenotypes in BTBR offer translational tools to discover neurochemical mechanisms underlying unusual mouse behaviors relevant to symptoms of autism. Because repetitive self-grooming in mice may be a displacement behavior elevated by stressors, we investigated neuroendocrine markers of stress and behavioral reactivity to stressors in BTBR mice, as compared to C57BL/6J (B6), a standard inbred strain with high sociability. Radioimmunoassays replicated previous findings that circulating corticosterone is higher in BTBR than in B6. Higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were detected in the brains of BTBR as compared to B6. No significant differences were detected in corticotrophin releasing factor (CRF) peptide or CRF mRNA. In response to behavioral stressors, BTBR and B6 were generally similar on behavioral tasks including stress-induced hyperthermia, elevated plus-maze, light ↔ dark exploration, tail flick, acoustic startle and prepulse inhibition. BTBR displayed less reactivity than B6 to a noxious thermal stimulus in the hot plate, and less immobility than B6 in both the forced swim and tail suspension depression-related tasks. BTBR, therefore, exhibited lower depression-like scores than B6 on two standard tests sensitive to antidepressants, did not differ from B6 on two well-validated anxiety-like behaviors, and did not exhibit unusual stress reactivity to sensory stimuli. Our findings support the interpretation that autism-relevant social deficits, vocalizations, and repetitive behaviors are not the result of abnormal stress reactivity in the BTBR mouse model of autism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号