首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
  综合类   4篇
  2015年   1篇
  2014年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
基于聚类算法对数据对象多个属性综合聚类的特点,研究网络流量的GMM模型及其在数据流尺度上的Lognormal分布。用EM算法研究了具有交互特征的网络流量的分类;通过与K-means算法比较,讨论了EM算法在流量聚类中的适用性;通过平衡和不平衡流量的聚类分析,研究了不同类型流量GMM建模的有效性。研究流量的幂律关系及其在不同尺度间的传递性,用户行为和应用程序特征通过传输层控制协议分解传递到IP层后,在数据包尺度上表现出分形和自相似性,在数据流尺度上表现出Log- normal分布。  相似文献
2.
目的自动化提取和分割序列颅脑CT图像颅腔内结构。方法本研究首先利用颅脑CT的解剖学结构,基于区域生长法和形态学方法提取出序列颅脑CT颅腔内结构。然后针对应用EM(期望最大化)算法分割图像时,初始值选取难点,提出了一种改进的基于参数受限高斯混合模型的EM分割算法,实现了对颅内结构的有效分割。结果实验结果表明,该算法能够实现从颅底到颅顶的所有CT图像颅腔内结构的计算机自动化提取和分割,结果准确。结论本文算法在绝大多数情况下是有效的。  相似文献
3.
水平集方法(LSM)图像分割的本质是求解一个随时间变化的偏微分方程,而使用变分法求解此水平集方程(LSE)往往要耗费过多的计算时间。为了减少算法的运行时间,提出了一种快速水平集图像分割算法。该算法在模糊聚类水平集方法(FCM-LSM)的基础上使用高斯混合模型(GMM)改造其隶属度损失函数,并利用离散网格Boltzmann方法(LBM)求解水平集方程。实验结果表明:本文提出的算法无论是在执行效率上还是在分割效果上都优于传统方法,证明了算法的可行性。  相似文献
4.
结合医学影像诊断的实际情况,提出一种基于贝叶斯网络高斯混合模型的医学图像检索方法。算法首先引入条件高斯模型,将连续变量模糊离散化,再利用贝叶斯网络对医学图像进行语义建模,并最终完成基于内容的图像检索。实验采用医学图像库中的CT和MRI影像样本进行仿真,仿真结果显示,这种方法是有效的,可以满足医生的一般需要。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号