首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   1篇
  综合类   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 17 毫秒
1
1.
目的 探讨不同扩散敏感系数(b值)的弥散加权成像(DWI)对基于生成对抗网络(GAN)的前列腺癌(PCa)检测影响的价值。方法 回顾性收集2012年1月—2018年6月同济大学附属同济医院就诊的前列腺疾病病例446例,其中PCa有174例、前列腺增生(BPH)有272例,所有病例均采用Siemens Verio 3.0T MRI扫描并经直肠超声引导下前列腺穿刺活检或前列腺根治术后病理证实。MRI成像序列包括横断位、矢状位高分辨T2加权成像(T2WI),扩散敏感系数(b值)分别为0、500、1000s/mm2横断位弥散加权成像(DWI)及动态对比增强(DCE)扫描,通过Matlab后处理计算化合成b分别为1500、2000s/mm2的DWI图像。本研究提出一个新型神经网络模型SegDenseAN,并结合不同b值DWI图像进行检测。将不同b值DWI与ADC影像的组合作为SegDenseAN网络的输入,各组合分别为: 组合1: ADC图;组合2: ADC+DWI0+DWI500;组合3: ADC+DWI0+DWI1000;组合4: ADC+DWI0+DWI1500;组合5: ADC+DWI1000+DWI1500;组合6: ADC+DWI1000+DWI2000,分析比较不同组合对准确率的影响。结果 组合1~6的准确率分别为0.871、0.887、0.903、0.903、0.903、0.935;组合1~6的灵敏度分别为0.935、0.935、0.968、0.968、0.968、0.968;组合1~6的特异度分别为0.806、0.839、0.839、0.839、0.839、0.903;组合6的前列腺癌病灶区域识别最接近于前列腺癌标注的金标准。结论 SegDenseAN 可以实现对于病灶区域的自动分割进而有助于前列腺癌的自动检测;多b值尤其是多高b值DWI与ADC影像的不同结合对算法的检测效果有影响,多个高b值DWI图像与ADC图结合有助于提高前列腺癌的智能检测结果。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号