首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6846篇
  免费   401篇
  国内免费   146篇
耳鼻咽喉   55篇
儿科学   56篇
妇产科学   15篇
基础医学   1278篇
口腔科学   19篇
临床医学   219篇
内科学   513篇
皮肤病学   4篇
神经病学   4034篇
特种医学   48篇
外科学   162篇
综合类   221篇
预防医学   35篇
眼科学   95篇
药学   477篇
  1篇
中国医学   94篇
肿瘤学   67篇
  2023年   43篇
  2022年   79篇
  2021年   189篇
  2020年   164篇
  2019年   109篇
  2018年   140篇
  2017年   151篇
  2016年   160篇
  2015年   187篇
  2014年   281篇
  2013年   337篇
  2012年   299篇
  2011年   370篇
  2010年   317篇
  2009年   391篇
  2008年   458篇
  2007年   361篇
  2006年   330篇
  2005年   301篇
  2004年   281篇
  2003年   254篇
  2002年   214篇
  2001年   148篇
  2000年   144篇
  1999年   119篇
  1998年   104篇
  1997年   125篇
  1996年   89篇
  1995年   98篇
  1994年   96篇
  1993年   99篇
  1992年   96篇
  1991年   85篇
  1990年   84篇
  1989年   58篇
  1988年   66篇
  1987年   60篇
  1986年   73篇
  1985年   91篇
  1984年   60篇
  1983年   38篇
  1982年   35篇
  1981年   55篇
  1980年   43篇
  1979年   21篇
  1978年   17篇
  1977年   16篇
  1976年   14篇
  1973年   12篇
  1971年   11篇
排序方式: 共有7393条查询结果,搜索用时 31 毫秒
1.
运动早已被研究证实可有效预防或治疗抑郁症,并已成为许多研究者推荐的抑郁症干预方法,但缺乏对既往有关抑郁症的运动干预方法的研究成果的有效整合,且目前各国仍缺乏统一的临床运动疗法指南。本文系统、全面地探讨了运动对抑郁症的影响,包括运动类型、强度、频率和运动量等因素对不同人群抑郁症的干预效果,并通过梳理相关文献,总结了抑郁症的发生及运动抗抑郁的神经生物学机制。本文表明在抑郁症的运动干预中,有氧运动是最常选用的运动类型,运动强度通常为中等强度到高强度,高频率和高剂量是推荐采用的运动频率和运动量;运动抗抑郁的神经生物学机制主要为其可以改善中枢神经系统组织的形态结构、提高一系列神经营养因子的水平,从而增强神经元可塑性并改善神经分泌系统功能,减少神经炎性反应和氧化性应激对脑组织造成的损伤。本文能够为我国抑郁症临床运动处方的制订和实施提供一定的参考,并为运动抗抑郁研究的深入开展提供借鉴。  相似文献   
2.
Subjective tinnitus is the most common type of tinnitus, which is the manifestation of pathological activities in the brain. It happens in a substantial portion of the general population and brings significant burden to the society. Severe subjective tinnitus can lead to depression and insomnia and severely affects patients’ quality of life. However, due to poor understanding of its etiology and pathogenesis, treatment of subjective tinnitus remains challenging. In recent decades, a growing number of studies have shown that subjective tinnitus is related to lesion-induced neural plasticity of auditory and non-auditory central systems. This article reviews cellular mechanisms of neural plasticity in subjective tinnitus to provide further understanding of its pathogenesis.  相似文献   
3.
The fact that the transmission and processing of visual information in the brain takes time presents a problem for the accurate real-time localization of a moving object. One way this problem might be solved is extrapolation: using an object''s past trajectory to predict its location in the present moment. Here, we investigate how a simulated in silico layered neural network might implement such extrapolation mechanisms, and how the necessary neural circuits might develop. We allowed an unsupervised hierarchical network of velocity-tuned neurons to learn its connectivity through spike-timing-dependent plasticity (STDP). We show that the temporal contingencies between the different neural populations that are activated by an object as it moves causes the receptive fields of higher-level neurons to shift in the direction opposite to their preferred direction of motion. The result is that neural populations spontaneously start to represent moving objects as being further along their trajectory than where they were physically detected. Because of the inherent delays of neural transmission, this effectively compensates for (part of) those delays by bringing the represented position of a moving object closer to its instantaneous position in the world. Finally, we show that this model accurately predicts the pattern of perceptual mislocalization that arises when human observers are required to localize a moving object relative to a flashed static object (the flash-lag effect; FLE).SIGNIFICANCE STATEMENT Our ability to track and respond to rapidly changing visual stimuli, such as a fast-moving tennis ball, indicates that the brain is capable of extrapolating the trajectory of a moving object to predict its current position, despite the delays that result from neural transmission. Here, we show how the neural circuits underlying this ability can be learned through spike-timing-dependent synaptic plasticity and that these circuits emerge spontaneously and without supervision. This demonstrates how the neural transmission delays can, in part, be compensated to implement the extrapolation mechanisms required to predict where a moving object is at the present moment.  相似文献   
4.
The continuous generation of new neurons occurs in at least two well-defined niches in the adult rodent brain. One of these areas is the subgranular zone of the dentate gyrus (DG) in the hippocampus. While the DG is associated with contextual and spatial learning and memory, hippocampal neurogenesis is necessary for pattern separation. Hippocampal neurogenesis begins with the activation of neural stem cells and culminates with the maturation and functional integration of a portion of the newly generated glutamatergic neurons into the hippocampal circuits. The neurogenic process is continuously modulated by intrinsic factors, one of which is neuroinflammation. The administration of lipopolysaccharide (LPS) has been widely used as a model of neuroinflammation and has yielded a body of evidence for unveiling the detrimental impact of inflammation upon the neurogenic process. This work aims to provide a comprehensive overview of the current knowledge on the effects of the systemic and central administration of LPS upon the different stages of neurogenesis and discuss their effects at the molecular, cellular, and behavioral levels.  相似文献   
5.
The pathophysiology and treatment of depression have been the focus of intense research and while there is much that remains unknown, modern neurobiological approaches are making progress. This work demonstrates that stress and depression are associated with atrophy of neurons and reduced synaptic connectivity in brain regions such as the hippocampus and prefrontal cortex that contribute to depressive behaviors, and conversely that antidepressant treatment can reverse these deficits. The role of neurotrophic factors, particularly brain‐derived neurotrophic factor (BDNF), has been of particular interest as these factors play a key role in activity‐dependent regulation of synaptic plasticity. Here, we review the literature demonstrating that exposure to stress and depression decreases BDNF expression in the hippocampus and PFC and conversely that antidepressant treatment can up‐regulate BDNF in the adult brain and reverse the effects of stress. We then focus on rapid‐acting antidepressants, particularly the NMDA receptor antagonist ketamine, which produces rapid synaptic and antidepressant behavioral actions that are dependent on activity‐dependent release of BDNF. This rapid release of BDNF differs from typical monoaminergic agents that require chronic administration to produce a slow induction of BDNF expression, consistent with the time lag for the therapeutic action of these agents. We review evidence that other classes of rapid‐acting agents also require BDNF release, demonstrating that this is a common, convergent downstream mechanism. Finally, we discuss evidence that the actions of ketamine are also dependent on another growth factor, vascular endothelial growth factor (VEGF) and its complex interplay with BDNF.  相似文献   
6.
The mammalian visual cortex contains multiple retinotopically defined areas that process distinct features of the visual scene. Little is known about what guides the functional differentiation of visual cortical areas during development. Recent studies in mice have revealed that visual input from the two eyes provides spatiotemporally distinct signals to primary visual cortex (V1), such that contralateral eye-dominated V1 neurons respond to higher spatial frequencies than ipsilateral eye-dominated neurons. To test whether binocular visual input drives the differentiation of visual cortical areas, we used two-photon calcium imaging to characterize the effects of juvenile monocular deprivation (MD) on the responses of neurons in V1 and two higher visual areas, LM (lateromedial) and PM (posteromedial). In adult mice of either sex, we find that MD prevents the emergence of distinct spatiotemporal tuning in V1, LM, and PM. We also find that, within each of these areas, MD reorganizes the distinct spatiotemporal tuning properties driven by the two eyes. Moreover, we find a relationship between speed tuning and ocular dominance in all three areas that MD preferentially disrupts in V1, but not in LM or PM. Together, these results reveal that balanced binocular vision during development is essential for driving the functional differentiation of visual cortical areas. The higher visual areas of mouse visual cortex may provide a useful platform for investigating the experience-dependent mechanisms that set up the specialized processing within neocortical areas during postnatal development.SIGNIFICANCE STATEMENT Little is known about the factors guiding the emergence of functionally distinct areas in the brain. Using in vivo Ca2+ imaging, we recorded visually evoked activity from cells in V1 and higher visual areas LM (lateromedial) and PM (posteromedial) of mice. Neurons in these areas normally display distinct spatiotemporal tuning properties. We found that depriving one eye of normal input during development prevents the functional differentiation of visual areas. Deprivation did not disrupt the degree of speed tuning, a property thought to emerge in higher visual areas. Thus, some properties of visual cortical neurons are shaped by binocular experience, while others are resistant. Our study uncovers the fundamental role of binocular experience in the formation of distinct areas in visual cortex.  相似文献   
7.
Throughout the nervous system, the convergence of two or more presynaptic inputs on a target cell is commonly observed. The question we ask here is to what extent converging inputs influence each other''s structural and functional synaptic plasticity. In complex circuits, isolating individual inputs is difficult because postsynaptic cells can receive thousands of inputs. An ideal model to address this question is the Drosophila larval neuromuscular junction (NMJ) where each postsynaptic muscle cell receives inputs from two glutamatergic types of motor neurons (MNs), known as 1b and 1s MNs. Notably, each muscle is unique and receives input from a different combination of 1b and 1s MNs; we surveyed multiple muscles for this reason. Here, we identified a cell-specific promoter that allows ablation of 1s MNs postinnervation and measured structural and functional responses of convergent 1b NMJs using microscopy and electrophysiology. For all muscles examined in both sexes, ablation of 1s MNs resulted in NMJ expansion and increased spontaneous neurotransmitter release at corresponding 1b NMJs. This demonstrates that 1b NMJs can compensate for the loss of convergent 1s MNs. However, only a subset of 1b NMJs showed compensatory evoked neurotransmission, suggesting target-specific plasticity. Silencing 1s MNs led to similar plasticity at 1b NMJs, suggesting that evoked neurotransmission from 1s MNs contributes to 1b synaptic plasticity. Finally, we genetically blocked 1s innervation in male larvae and robust 1b synaptic plasticity was eliminated, raising the possibility that 1s NMJ formation is required to set up a reference for subsequent synaptic perturbations.SIGNIFICANCE STATEMENT In complex neural circuits, multiple convergent inputs contribute to the activity of the target cell, but whether synaptic plasticity exists among these inputs has not been thoroughly explored. In this study, we examined synaptic plasticity in the structurally and functionally tractable Drosophila larval neuromuscular system. In this convergent circuit, each muscle is innervated by a unique pair of motor neurons. Removal of one neuron after innervation causes the adjacent neuron to increase neuromuscular junction outgrowth and functional output. However, this is not a general feature as each motor neuron differentially compensates. Further, robust compensation requires initial coinnervation by both neurons. Understanding how neurons respond to perturbations in adjacent neurons will provide insight into nervous system plasticity in both healthy and disease states.  相似文献   
8.
Perfluorooctanoic acid (PFOA) is an abundant per- and polyfluoroalkyl substance (PFAS) detected in both indoor and outdoor environments. While studies suggest exposure concerns for humans, studies investigating PFOA-induced neurotoxicity are lacking. To address this gap, we exposed differentiated human SH-SY5Y cells to PFOA (0.1 μM up to 500 μM) at different time points (4, 24, 48, and 72 h) and measured cell viability, Casp3/7 activity, ATP levels, ATP synthase enzyme activity, mitochondrial membrane potential, reactive oxygen species (ROS), oxygen consumption rates for mitochondrial stress test (XFe24 Flux analyzer), glucose utilization, and global metabolome profiles to assess the potential for PFOA-induced neurotoxicity. Treatment with 10 or 100 μM PFOA did not compromise cell viability nor induce cytotoxicity to SH-SY5Y cells over a 48-hour exposure period. However, >250 μM PFOA compromised cell viability, induced cytotoxicity, and induced caspase 3/7 activity at 48 h. ATP levels were reduced in cells treated with 400 μM PFOA for 24 and 48 h, and with 100 μM PFOA and higher at 72 h. ATP synthase activity was inhibited by 250 μM PFOA but was unchanged by PFOA treatment at 200 μM or less. Conversely, mitochondrial membrane potential was reduced by >10 μM PFOA after 24 h. Total ROS was increased with 100 μM PFOA and higher after 4 h of exposure. Several mitochondria-related endpoints (basal respiration, ATP production, maximum respiration) were negatively affected at 250 μM PFOA at both 24- and 48-hour exposure, but were unaltered at concentrations of 100 μM PFOA or less. One exception was mitochondrial spare capacity, which was reduced by 100 μM PFOA after 24-hour exposure. Similarly, glycolysis, glycolytic capacity, and glycolytic reserve of SH-SY5Y cells were not altered by 10 nor 100 μM PFOA. Nontargeted metabolomics was conducted in cells treated with either 10 or 100 μM PFOA for 48 h, as these two concentrations were not cytotoxic and 28 metabolites differed among treatments. Notable was that 10 μM PFOA had little effect on the SH-SY5Y metabolome, and the metabolic profile was not statistically different from media nor solvent controls. On the other hand, 100 μM PFOA shifted the metabolic signature of the neuronal cells, leading to reduced abundance of ATP-related metabolites (adenine, nicotinamide), neurotransmitter precursors (DL-tryptophan, l-tyrosine), and metabolites that protect mitochondria during oxidative stress (betaine, orotic acid, and l-acetyl carnitine). We hypothesize that this metabolic signature may be associated with the reduced mitochondrial membrane potential observed at lower PFOA concentrations. Metabolic shifts appear to precede compromised cell viability, cytotoxicity, and apoptosis. This study generates mechanistic knowledge regarding PFOA-induced neurotoxicity, focusing on mitochondrial oxidative respiration and the neuronal metabolome.  相似文献   
9.
Strain localization analysis for orthotropic-associated plasticity in cohesive–frictional materials is addressed in this work. Specifically, the localization condition is derived from Maxwell’s kinematics, the plastic flow rule and the boundedness of stress rates. The analysis is applicable to strong and regularized discontinuity settings. Expanding on previous works, the quadratic orthotropic Hoffman and Tsai–Wu models are investigated and compared to pressure insensitive and sensitive models such as von Mises, Hill and Drucker–Prager. Analytical localization angles are obtained in uniaxial tension and compression under plane stress and plane strain conditions. These are only dependent on the plastic potential adopted; ensuing, a geometrical interpretation in the stress space is offered. The analytical results are then validated by independent numerical simulations. The B-bar finite element is used to deal with the limiting incompressibility in the purely isochoric plastic flow. For a strip under vertical stretching in plane stress and plane strain as well as Prandtl’s problem of indentation by a flat rigid die in plane strain, numerical results are presented for both isotropic and orthotropic plasticity models with or without tilting angle between the material axes and the applied loading. The influence of frictional behavior is studied. In all the investigated cases, the numerical results provide compelling support to the analytical prognosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号