首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  国内免费   17篇
  完全免费   10篇
  神经病学   451篇
  2015年   4篇
  2014年   6篇
  2013年   21篇
  2012年   32篇
  2011年   77篇
  2010年   38篇
  2009年   42篇
  2008年   41篇
  2007年   29篇
  2006年   37篇
  2005年   34篇
  2004年   18篇
  2003年   30篇
  2002年   14篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
排序方式: 共有451条查询结果,搜索用时 46 毫秒
1.
Neocortical modulation of the amygdala response to fearful stimuli.   总被引:24,自引:0,他引:24  
BACKGROUND: The cortical circuitry involved in conscious cognitive processes and the subcortical circuitry involved in fear responses have been extensively studied with neuroimaging, but their interactions remain largely unexplored. A recent functional magnetic resonance imaging (fMRI) study demonstrated that the engagement of the right prefrontal cortex during the cognitive evaluation of angry and fearful facial expressions is associated with an attenuation of the response of the amygdala to these same stimuli, providing evidence for a functional neural network for emotional regulation. METHODS: In the current study, we have explored the generalizability of this functional network by using threatening and fearful non-face stimuli derived from the International Affective Picture System (IAPS), as well as the influence of this network on peripheral autonomic responses. RESULTS: Similar to the earlier findings with facial expressions, blood oxygen level dependent fMRI revealed that whereas perceptual processing of IAPS stimuli was associated with a bilateral amygdala response, cognitive evaluation of these same stimuli was associated with attenuation of this amygdala response and a correlated increase in response of the right prefrontal cortex and the anterior cingulate cortex. Moreover, this pattern was reflected in changes in skin conductance. CONCLUSIONS: The current results further implicate the importance of neocortical regions, including the prefrontal and anterior cingulate cortices, in regulating emotional responses mediated by the amygdala through conscious evaluation and appraisal.  相似文献
2.
脑功能磁共振成像研究进展   总被引:21,自引:0,他引:21  
主要综述fMRI产生的历史、成像原理、成像技术和方法、已经取得的成绩以及将来研究发展的方向等。fMRI产生技术广泛应用的20世纪90年代,主要受快速成像技术的影响,从有创走向无创,从而受到神经、认知和心理科学领域的极大关注。fMRI原理是根据神经元兴奋后局部氧耗与血流增幅不一致,而BOLD效应机制成像,间接显示神经元活动。成像主要采用平面回波成像(EPI)和快速小角度激发(FLASH)技术、二者在时间和空间分辨率上各有优劣。最后几年来,fMRI技术对脑功能的研究已取得了巨大的成绩,估计将在这一领域继续拥有非常重要的地位。将来fMRI可能主要在BOLD效应的生理过程、临床应用以及高场磁体的应用等领域进一步展开。  相似文献
3.
Autism is a severe developmental disorder marked by a triad of deficits, including impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. In this review, it is argued that the search for the neurobiological bases of the autism spectrum disorders should focus on the social deficits, as they alone are specific to autism and they are likely to be most informative with respect to modeling the pathophysiology of the disorder. Many recent studies have documented the difficulties persons with an autism spectrum disorder have accurately perceiving facial identity and facial expressions. This behavioral literature on face perception abnormalities in autism is reviewed and integrated with the functional magnetic resonance imaging (fMRI) literature in this area, and a heuristic model of the pathophysiology of autism is presented. This model posits an early developmental failure in autism involving the amygdala, with a cascading influence on the development of cortical areas that mediate social perception in the visual domain, specifically the fusiform "face area" of the ventral temporal lobe. Moreover, there are now some provocative data to suggest that visual perceptual areas of the ventral temporal pathway are also involved in important ways in representations of the semantic attributes of people, social knowledge and social cognition. Social perception and social cognition are postulated as normally linked during development such that growth in social perceptual skills during childhood provides important scaffolding for social skill development. It is argued that the development of face perception and social cognitive skills are supported by the amygdala-fusiform system, and that deficits in this network are instrumental in causing autism.  相似文献
4.
Neural circuitry underlying voluntary suppression of sadness.   总被引:18,自引:0,他引:18  
BACKGROUND: The ability to voluntarily self-regulate negative emotion is essential to a healthy psyche. Indeed, a chronic incapacity to suppress negative emotion might be a key factor in the genesis of depression and anxiety. Regarding the neural underpinnings of emotional self-regulation, a recent functional neuroimaging study carried out by our group has revealed that the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex are involved in voluntary suppression of sexual arousal. As few things are known, still, with respect to the neural substrate underlying volitional self-regulation of basic emotions, here we used functional magnetic resonance imaging to identify the neural circuitry associated with the voluntary suppression of sadness. METHODS: Twenty healthy female subjects were scanned during a Sad condition and a Suppression condition. In the Sad condition, subjects were instructed to react normally to sad film excerpts whereas, in the Suppression condition, they were asked to voluntarily suppress any emotional reaction in response to comparable stimuli. RESULTS: Transient sadness was associated with significant loci of activation in the anterior temporal pole and the midbrain, bilaterally, as well as in the left amygdala, left insula, and right ventrolateral prefrontal cortex (VLPFC) (Brodmann area [BA] 47). Correlational analyses carried out between self-report ratings of sadness and regional blood oxygen level dependent (BOLD) signal changes revealed the existence of positive correlations in the right VLPFC (BA 47), bilaterally, as well as in the left insula and the affective division of the left anterior cingulate gyrus (BA 24/32). In the Suppression condition, significant loci of activation were noted in the right DLPFC (BA 9) and the right orbitofrontal cortex (OFC) (BA 11), and positive correlations were found between the self-report ratings of sadness and BOLD signal changes in the right OFC (BA 11) and right DLPFC (BA 9). CONCLUSIONS: These results confirm the key role played by the DLPFC in emotional self-regulation. They also indicate that the right DLPFC and right OFC are components of a neural circuit implicated in voluntary suppression of sadness.  相似文献
5.
Dyslexia (specific reading disability).   总被引:17,自引:0,他引:17  
Converging evidence from a number of lines of investigation indicates that dyslexia represents a disorder within the language system and more specifically within a particular subcomponent of that system, phonological processing. Recent advances in imaging technology, particularly the development of functional magnetic resonance imaging, provide evidence of a neurobiological signature for dyslexia, specifically a disruption of two left hemisphere posterior brain systems, one parieto-temporal, the other occipito-temporal, with compensatory engagement of anterior systems around the inferior frontal gyrus and a posterior (right occipito-temporal) system. Furthermore, good evidence indicates a computational role for the left occipito-temporal system: the development of fluent (automatic) reading. The brain systems for reading are malleable and their disruption in dyslexic children may be remediated by provision of an evidence-based, effective reading intervention. In addition, functional magnetic resonance imaging studies of young adults with reading difficulties followed prospectively and longitudinally from age 5 through their mid twenties suggests that there may be two types of reading difficulties, one primarily on a genetic basis, the other, and far more common, reflecting environmental influences. These studies offer the promise for more precise identification and effective management of dyslexia in children, adolescents and adults.  相似文献
6.
BACKGROUND: Schizophrenic patients show deficits in working memory (WM) and inhibition of prepotent responses. We examined brain activity while subjects performed tasks that placed demands on WM and overriding prepotent response tendencies, testing predictions that both processes engage overlapping prefrontal cortical (PFC) regions and that schizophrenic patients show reduced PFC activity and performance deficits reflecting both processes. METHODS: Functional magnetic resonance imaging data were acquired while 16 schizophrenic and 15 healthy subjects performed the N-Back task that varied WM load and a version of the AX-CPT that required overriding a prepotent response tendency. RESULTS: Both tasks engaged overlapping cortical networks (e.g., bilateral dorsolateral PFC, Broca's area, parietal cortex). Increased WM load monotonically increased activity; preparation to override a prepotent response produced greater and more enduring activity. Group differences on each task emerged in a right dorsolateral PFC region: schizophrenic subjects showed lesser magnitude increases under conditions of high WM and prepotent response override demands, with concomitant performance impairments. CONCLUSIONS: Schizophrenic patients exhibit PFC-mediated deficits in WM and preparation to override prepotent responses. Findings are consistent with the operation of a single underlying PFC-mediated cognitive control mechanism and with physiologic dysfunction of the dorsolateral PFC in schizophrenic patients reflecting impairments in this mechanism.  相似文献
7.
BACKGROUND: Choosing between actions associated with uncertain rewards and punishments is mediated by neural circuitry encompassing the orbitofrontal cortex, anterior cingulate cortex (ACC), and striatum; however, the precise conditions under which these different components are activated during decision-making cognition remain uncertain. METHODS: Fourteen healthy volunteers completed an event-based functional magnetic resonance imaging protocol to investigate blood-oxygenation-level-dependent (BOLD) responses during independently modeled phases of choice cognition. In the "decision phase," participants decided which of two simultaneous visually presented gambles they wished to play for monetary reward. The gambles differed in their magnitude of gains, magnitude of losses, and the probabilities with which these outcomes were delivered. In the "outcome phase," the result of each choice was indicated on the visual display. RESULTS: In the decision phase, choices involving large gains were associated with increased BOLD responses in the pregenual ACC, paracingulate, and right posterior orbitolateral cortex compared with choices involving small gains. In the outcome phase, good outcomes were associated with increased BOLD responses in the posterior orbitomedial cortex, subcallosal ACC, and ventral striatum compared with negative outcomes. There was only limited overlap between reward-related activity in ACC and orbitofrontal cortex during the decision and outcome phases. CONCLUSIONS: Neural activity within the medial and lateral orbitofrontal cortex, pregenual ACC, and striatum mediate distinct representations of reward-related information that are deployed at different stages during a decision-making episode.  相似文献
8.
BACKGROUND: A large number of studies suggest the presence of deficits in dorsolateral prefrontal cortex function during performance of working memory tasks in individuals with schizophrenia. However, working memory deficits may also present in other psychiatric disorders, such as major depression. It is not clear whether people with major depression also demonstrate impaired prefrontal activation during performance of working memory tasks. METHODS: We used functional magnetic resonance imaging to assess the patterns of cortical activation associated with the performance of a 2-back version of the N-Back task (working memory) in 38 individuals with schizophrenia and 14 with major depression. RESULTS: We found significant group differences in the activation of dorsolateral prefrontal cortex associated with working memory performance. Consistent with prior research, participants with schizophrenia failed to show activation of right dorsolateral prefrontal cortex in response to working memory tasks demands, whereas those with major depression showed clear activation of right and left dorsolateral prefrontal cortex as well as bilateral activation of inferior and superior frontal cortex. CONCLUSIONS: During performance of working memory tasks, deficits in prefrontal activation, including dorsolateral regions, are more severe in participants with schizophrenia (most of whom were recently released outpatients) than in unmedicated outpatients with acute nonpsychotic major depression.  相似文献
9.
Functional MRI (fMRI), visualizing changes in cerebral blood oxygenation, has to date not been performed either in patients with writer's cramp or in healthy subjects during writing. We compared the cerebral and cerebellar activation pattern of 12 patients with writer's cramp during writing with a group of 10 healthy subjects performing the same tasks over 30-s periods of rest or writing. Sixty echo planar imaging multi-slice datasets were analysed using SPM96 software. Data were analysed for each subject individually and groupwise for patients vs. controls. Healthy subjects showed a significant activation of the ipsilateral dentate nucleus, contralateral cerebellar hemisphere, contralateral primary sensorimotor cortex, and contralateral precentral gyrus during writing. Patients with writer's cramp showed significantly greater activation of the ipsilateral cerebellar hemisphere than controls. Also the activation in the primary sensorimotor cortex extended further caudally and anteriorly towards the premotor association area. Activation was observed in the thalamus during writing only among the patients. Our results indicate an increased basal ganglia output via the thalamus to the motor and premotor cortical areas in dystonia patients and support the notion of disinhibition of the motor cortex leading to coconcentrations and dystonic postures. Received: 10 November 1999 / Received in revised form: 4 April 2000 / Accepted: 26 April 2000  相似文献
10.
The strongest sex differences on any cognitive task, favoring men, are found for tasks that require the mental rotation of three-dimensional objects. A number of studies have explored functional brain activation during mental rotation tasks, and sex differences have been noted in some. However, in these studies there was a substantial confounding factor because male and female subjects differed in overall performance levels. In contrast, our functional brain activation study examined cortical activation patterns for males and females who did not differ in overall level of performance on three mental rotation tasks. This allowed us to eliminate any confounding influences of overall performance levels. Women exhibited significant bilateral activations in the intraparietal sulcus (IPS) and the superior and inferior parietal lobule, as well as in the inferior temporal gyrus (ITG) and the premotor areas. Men showed significant activation in the right parieto-occitpital sulcus (POS), the left intraparietal sulcus and the left superior parietal lobule (SPL). Both men and women showed activation of the premotor areas but men also showed an additional significant activation of the left motor cortex. No significant activation was found in the inferior temporal gyrus. Our results suggest that there are genuine between-sex differences in cerebral activation patterns during mental rotation activities even when performances are similar. Such differences suggest that the sexes use different strategies in solving mental rotation tasks.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号