首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1443篇
  免费   37篇
  国内免费   15篇
耳鼻咽喉   4篇
儿科学   75篇
妇产科学   11篇
基础医学   218篇
临床医学   86篇
内科学   41篇
神经病学   769篇
特种医学   23篇
外科学   93篇
综合类   98篇
预防医学   18篇
药学   54篇
中国医学   5篇
  2023年   10篇
  2022年   17篇
  2021年   56篇
  2020年   28篇
  2019年   31篇
  2018年   40篇
  2017年   34篇
  2016年   22篇
  2015年   24篇
  2014年   75篇
  2013年   63篇
  2012年   51篇
  2011年   82篇
  2010年   65篇
  2009年   63篇
  2008年   68篇
  2007年   61篇
  2006年   57篇
  2005年   49篇
  2004年   41篇
  2003年   29篇
  2002年   35篇
  2001年   26篇
  2000年   30篇
  1999年   30篇
  1998年   25篇
  1997年   30篇
  1996年   25篇
  1995年   25篇
  1994年   39篇
  1993年   49篇
  1992年   36篇
  1991年   39篇
  1990年   26篇
  1989年   25篇
  1988年   24篇
  1987年   15篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1982年   7篇
  1980年   2篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1971年   5篇
  1969年   2篇
  1968年   3篇
  1965年   1篇
排序方式: 共有1495条查询结果,搜索用时 234 毫秒
1.
《Clinical neurophysiology》2021,132(7):1622-1635
ObjectiveTo assess whether ictal electric source imaging (ESI) on low-density scalp EEG can approximate the seizure onset zone (SOZ) location and predict surgical outcome in children with refractory epilepsy undergoing surgery.MethodsWe examined 35 children with refractory epilepsy. We dichotomized surgical outcome into seizure- and non-seizure-free. We identified ictal onsets recorded with scalp and intracranial EEG and localized them using equivalent current dipoles and standardized low-resolution magnetic tomography (sLORETA). We estimated the localization accuracy of scalp EEG as distance of scalp dipoles from intracranial dipoles. We also calculated the distances of scalp dipoles from resection, as well as their resection percentage and compared between seizure-free and non-seizure-free patients. We built receiver operating characteristic curves to test whether resection percentage predicted outcome.ResultsResection distance was lower in seizure-free patients for both dipoles (p = 0.006) and sLORETA (p = 0.04). Resection percentage predicted outcome with a sensitivity of 57.1% (95% CI, 34–78.2%), a specificity of 85.7% (95% CI, 57.2–98.2%) and an accuracy of 68.6% (95% CI, 50.7–83.5%) (p = 0.01).ConclusionIctal ESI performed on low-density scalp EEG can delineate the SOZ and predict outcome.SignificanceSuch an application may increase the number of children who are referred for epilepsy surgery and improve their outcome.  相似文献   
2.
《Clinical neurophysiology》2021,132(3):708-719
ObjectiveTo clarify the effects of unfused cranial bones on magnetoencephalography (MEG) signals during early development.MethodsIn a simulation study, we compared the MEG signals over a spherical head model with a circular hole mimicking the anterior fontanel to those over the same head model without the fontanel for different head and fontanel sizes with varying skull thickness and conductivity.ResultsThe fontanel had small effects according to three indices. The sum of differences in signal over a sensor array due to a fontanel, for example, was < 6% of the sum without the fontanel. However, the fontanel effects were extensive for dipole sources deep in the brain or outside the fontanel for larger fontanels. The effects were comparable in magnitude for tangential and radial sources. Skull thickness significantly increased the effect, while skull conductivity had minor effects.ConclusionMEG signal is weakly affected by a fontanel. However, the effects can be extensive and significant for radial sources, thicker skull and large fontanels. The fontanel effects can be intuitively explained by the concept of secondary sources at the fontanel wall.SignificanceThe minor influence of unfused cranial bones simplifies MEG analysis, but it should be considered for quantitative analysis.  相似文献   
3.
《Clinical neurophysiology》2021,132(2):498-504
Changes in physiological functions after spaceflight and simulated spaceflight involve several mechanisms. Microgravity is one of them and it can be partially reproduced with models, such as head down bed rest (HDBR). Yet, only a few studies have investigated in detail the complexity of neurophysiological systems and their integration to maintain homeostasis. Central nervous system changes have been studied both in their structural and functional component with advanced techniques, such as functional magnetic resonance (fMRI), showing the main involvement of the cerebellum, cortical sensorimotor, and somatosensory areas, as well as vestibular-related pathways. Analysis of electroencephalography (EEG) led to contrasting results, mainly due to the different factors affecting brain activity. The study of corticospinal excitability may enable a deeper understanding of countermeasures' effect, since greater excitability has been shown being correlated with better preservation of functions. Less is known about somatosensory evoked potentials and peripheral nerve function, yet they may be involved in a homeostatic mechanism fundamental to thermoregulation. Extending the knowledge of such alterations during simulated microgravity may be useful not only for space exploration, but for its application in clinical conditions and for life on Earth, as well.  相似文献   
4.
《Brain stimulation》2019,12(5):1261-1270
BackgroundThe motor potentials evoked by transcranial magnetic stimulation (TMS) over the motor hand area (M1-HAND) show substantial inter-trial variability. Pericentral mu-rhythm oscillations, might contribute to inter-trial variability. Recent studies targeting mu-activity based on real-time electroencephalography (EEG) reported an influence of mu-power and mu-phase on the amplitude of motor evoked potentials (MEPs) in a preselected group with strong pericentral mu-activity. Other studies that determined mu-power or mu-phase based on post-hoc trial sorting according in non-preselected individuals were largely negative.ObjectivesTo reassess if cortico-spinal activity is modulated by the mu-rhythm, we applied single-pulse TMS to the M1-HAND conditional on the phase of the intrinsically expressed pericentral mu-rhythm in 14 non-preselected healthy young participants.MethodsTMS was given at 0, 90, 180, and 270° of the mu-phase. Based on the absence of effects of mu-phase or mu-power when analyzing the mean MEP amplitudes, we also computed a linear mixed effects model, which included mu-phase, mu-power, inter-stimulus interval (ISIs) as fixed effects, treating the subject factor as a random effect.ResultsMixed model analysis revealed a significant effect of mu-power and ISI, but no effect of mu-phase and no interactions. MEP amplitude scaled linearly with lower mu-power or longer ISIs, but these modulatory effects were very small relative to inter-trial MEP variability.ConclusionOur largely negative results are in agreement with previous offline TMS-EEG studies and point to a possible influence of ISI. Future research needs to clarify under which circumstances the responsiveness of human the M1-HAND to TMS depends on the synchronicity with mu-power and mu-phase.  相似文献   
5.
The specificity with which past experiences can be remembered varies across the lifespan, possibly due to differences in how precisely information is encoded. Memory formation can be investigated through repetition effects, the common finding that neural activity is altered when stimuli are repeated. However, whether differences in this indirect measure of memory formation relate to lifespan differences in memory specificity has not yet been established. In the present study, we examined repetition effects in event-related potentials and their relation to recognition. During incidental encoding, children (aged 7–9 years), young adults (18–30 years), and older adults (65–76 years) viewed repeated object images from different categories. During subsequent recognition, we distinguished memory for the specific items versus the general categories. We identified repetition suppression in all age groups, and repetition enhancement for adults. Furthermore, individual item recognition performance comprising lure discrimination was positively associated with the magnitude of the neural repetition effects, which did not differ between groups, indicating common neural mechanisms of memory formation. Our findings demonstrate that neural repetition effects reflect the formation of highly specific memory representations and highlight their significance as a neural indicator of individual differences in episodic memory encoding across the lifespan.  相似文献   
6.
7.
《Clinical neurophysiology》2020,131(11):2651-2656
ObjectiveAs concerns regarding neurological manifestations in COVID-19 (coronavirus disease 2019) patients increase, limited data exists on continuous electroencephalography (cEEG) findings in these patients. We present a retrospective cohort study of cEEG monitoring in COVID-19 patients to better explore this knowledge gap.MethodsAmong 22 COVID-19 patients, 19 underwent cEEGs, and 3 underwent routine EEGs (<1 h). Demographic and clinical variables, including comorbid conditions, discharge disposition, survival and cEEG findings, were collected.ResultscEEG was performed for evaluation of altered mental status (n = 17) or seizure-like events (n = 5). Five patients, including 2 with epilepsy, had epileptiform abnormalities on cEEG. Two patients had electrographic seizures without a prior epilepsy history. There were no acute neuroimaging findings. Periodic discharges were noted in one-third of patients and encephalopathic EEG findings were not associated with IV anesthetic use.ConclusionsInterictal epileptiform abnormalities in the absence of prior epilepsy history were rare. However, the discovery of asymptomatic seizures in two of twenty-two patients was higher than previously reported and is therefore of concern.SignificancecEEG monitoring in COVID-19 patients may aid in better understanding an epileptogenic potential of SARS-CoV2 infection. Nevertheless, larger studies utilizing cEEG are required to better examine acute epileptic risk in COVID-19 patients.  相似文献   
8.
《Clinical neurophysiology》2020,131(5):1087-1098
ObjectiveFunctional connectivity networks (FCNs) based on interictal electroencephalography (EEG) can identify pathological brain networks associated with epilepsy. FCNs are altered by interictal epileptiform discharges (IEDs), but it is unknown whether this is due to the morphology of the IED or the underlying pathological activity. Therefore, we characterized the impact of IEDs on the FCN through simulations and EEG analysis.MethodsWe introduced simulated IEDs to sleep EEG recordings of eight healthy controls and analyzed the effect of IED amplitude and rate on the FCN. We then generated FCNs based on epochs with and without IEDs and compared them to the analogous FCNs from eight subjects with infantile spasms (IS), based on 1340 visually marked IEDs. Differences in network structure and strength were assessed.ResultsIEDs in IS subjects caused increased connectivity strength but no change in network structure. In controls, simulated IEDs with physiological amplitudes and rates did not alter network strength or structure.ConclusionsIncreases in connectivity strength in IS subjects are not artifacts caused by the interictal spike waveform and may be related to the underlying pathophysiology of IS.SignificanceDynamic changes in EEG-based FCNs during IEDs may be valuable for identification of pathological networks associated with epilepsy.  相似文献   
9.
《Brain stimulation》2021,14(2):304-315
BackgroundSingle-pulse transcranial magnetic stimulation (TMS) elicits an evoked electroencephalography (EEG) potential (TMS-evoked potential, TEP), which is interpreted as direct evidence of cortical reactivity to TMS. Thus, combining TMS with EEG can be used to investigate the mechanism underlying brain network engagement in TMS treatment paradigms. However, controversy remains regarding whether TEP is a genuine marker of TMS-induced cortical reactivity or if it is confounded by responses to peripheral somatosensory and auditory inputs. Resolving this controversy is of great significance for the field and will validate TMS as a tool to probe networks of interest in cognitive and clinical neuroscience.ObjectiveHere, we delineated the cortical origin of TEP by spatially and temporally localizing successive TEP components, and modulating them with transcranial direct current stimulation (tDCS) to investigate cortical reactivity elicited by single-pulse TMS and its causal relationship with cortical excitability.MethodsWe recruited 18 healthy participants in a double-blind, cross-over, sham-controlled design. We collected motor-evoked potentials (MEPs) and TEPs elicited by suprathreshold single-pulse TMS targeting the left primary motor cortex (M1). To causally test cortical and corticospinal excitability, we applied tDCS to the left M1.ResultsWe found that the earliest TEP component (P25) was localized to the left M1. The following TEP components (N45 and P60) were largely localized to the primary somatosensory cortex, which may reflect afferent input by hand-muscle twitches. The later TEP components (N100, P180, and N280) were largely localized to the auditory cortex. As hypothesized, tDCS selectively modulated cortical and corticospinal excitability by modulating the pre-stimulus mu-rhythm oscillatory power.ConclusionTogether, our findings provide causal evidence that the early TEP components reflect cortical reactivity to TMS.  相似文献   
10.
《Clinical neurophysiology》2021,132(1):246-257
Delirium is a common neurocognitive disorder in hospital settings, characterised by fluctuating impairments in attention and arousal following an acute precipitant. Electroencephalography (EEG) is a useful method to understand delirium pathophysiology. We performed a systematic review to investigate associations between delirium and EEG measures recorded prior, during, and after delirium. A total of 1,655 articles were identified using PsycINFO, Embase and MEDLINE, 31 of which satisfied inclusion criteria. Methodological quality assessment was undertaken, resulting in a mean quality score of 4 out of a maximum of 5. Qualitative synthesis revealed EEG slowing and reduced functional connectivity discriminated between those with and without delirium (i.e. EEG during delirium); the opposite pattern was apparent in children, with cortical hyperexcitability. EEG appears to have utility in differentiating those with and without delirium, but delirium vulnerability and the long-term effects on brain function require further investigation. Findings provide empirical support for the theory that delirium is a disorder of reduced functional brain integration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号