首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1752篇
  国内免费   50篇
  完全免费   241篇
  神经病学   2043篇
  2019年   2篇
  2018年   57篇
  2017年   51篇
  2016年   70篇
  2015年   56篇
  2014年   77篇
  2013年   66篇
  2012年   68篇
  2011年   114篇
  2010年   59篇
  2009年   115篇
  2008年   136篇
  2007年   135篇
  2006年   51篇
  2005年   47篇
  2004年   53篇
  2003年   60篇
  2002年   52篇
  2001年   56篇
  2000年   3篇
  1999年   62篇
  1998年   58篇
  1997年   60篇
  1996年   52篇
  1995年   64篇
  1994年   56篇
  1993年   39篇
  1992年   51篇
  1991年   30篇
  1990年   25篇
  1989年   22篇
  1988年   21篇
  1987年   22篇
  1986年   24篇
  1985年   30篇
  1984年   20篇
  1983年   24篇
  1982年   14篇
  1981年   5篇
  1980年   9篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   4篇
  1971年   5篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
排序方式: 共有2043条查询结果,搜索用时 87 毫秒
1.
2.
Spinal cord and brain injuries lead to complex cellular and molecular interactions within the central nervous system in an attempt to repair the initial tissue damage. Many studies have illustrated the importance of the glial cell response to injury, and the influences of inflammation and wound healing processes on the overall morbidity and permanent disability that result. The abortive attempts of neuronal regeneration after spinal cord injury are influenced by inflammatory cell activation, reactive astrogliosis and the production of both growth promoting and inhibitory extracellular molecules. Despite the historical perspective that the glial scar was a mechanical barrier to regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Unlike myelin associated inhibitory molecules, which remain at largely static levels before and after central nervous system trauma, inhibitory extracellular matrix molecules are dramatically upregulated during the inflammatory stages after injury providing a window of opportunity for the delivery of candidate therapeutic interventions. While high dose methylprednisolone steroid therapy alone has not proved to be the solution to this difficult clinical problem, other strategies for modulating inflammation and changing the make up of inhibitory molecules in the extracellular matrix are providing robust evidence that rehabilitation after spinal cord and brain injury has the potential to significantly change the outcome for what was once thought to be permanent disability.  相似文献
3.
Nogo constitutes a family of neurite outgrowth inhibitors contributing to a failure of axonal regeneration in the adult central nervous system (CNS). Nogo-A is expressed exclusively on oligodendrocytes where Nogo-66 segment binds to Nogo receptor (NgR) expressed on neuronal axons. NgR signalling requires a coreceptor p75(NTR) or TROY in combination with an adaptor LINGO-1. To characterize the cell types expressing the NgR complex in the human CNS, we studied demyelinating lesions of multiple sclerosis (MS) brains by immunohistochemistry. TROY and LINGO-1 were identified in subpopulations of reactive astrocytes, macrophages/microglia and neurones but not in oligodendrocytes. TROY was up-regulated, whereas LINGO-1 was reduced in MS brains by Western blot. These results suggest that the ternary complex of NgR/TROY/LINGO-1 expressed on astrocytes, macrophages/microglia and neurones, by interacting with Nogo-A on oligodendrocytes, might modulate glial-neuronal interactions in demyelinating lesions of MS.  相似文献
4.
5.
Summary: Vascular malformations (VMs) are associated with epilepsy. The natural history of the various VMs, clinical presentation, and tendency to provoke epilepsy determine treatment strategies. Investigations have probed the mechanisms of epileptogenesis associated with these lesions. Electrophysiologic changes are associated with epileptogenic cortex adjacent to VMs. Putative pathophysiologic mechanisms of epileptogenesis include neuronal cell loss, glial proliferation and abnormal glial physiology, altered neurotransmitter levels, free radical formation, and aberrant second messenger physiology.  相似文献
6.
PURPOSE: Overexpression of multidrug transporters may play a role in the development of pharmacoresistance by decreasing extracellular drug levels in the brain. However, it is not known whether overexpression is due to an initial insult or evolves more gradually because of recurrent spontaneous seizures. In the present study, we investigated the expression of different multidrug transporters during epileptogenesis in the rat. In addition, we determined whether these transporters affected phenytoin (PHT) distribution in the brain. METHODS: Expression of multidrug resistance-associated proteins MRP1 and MRP2 and breast cancer-resistance protein (BCRP) was examined after electrically induced status epilepticus (SE) by immunocytochemistry and Western blot analysis. Brain/blood PHT levels were determined by high-performance liquid chromatography (HPLC) analysis in the presence and absence of the MRP inhibitor probenecid. RESULTS: Shortly after SE, MRP1, MRP2, and BCRP were upregulated in astrocytes within several limbic structures, including hippocampus. In chronic epileptic rats, these proteins were overexpressed in the parahippocampal cortex, specifically in blood vessels and astrocytes surrounding these vessels. Overexpression was related to the occurrence of SE and was present mainly in rats with a high seizure frequency. Brain PHT levels were significantly lower in epileptic rats compared with control rats, but pharmacologic inhibition of MRPs increased the PHT levels. CONCLUSIONS: Overexpression of MRP and BCRP was induced by SE as well as recurrent seizures. Moreover, overexpression was associated with lower PHT levels in the brain, which was reversed through inhibition of MRPs. These data suggest that administration of antiepileptic drugs in combination with specific inhibitors for multidrug transporters may be a promising therapeutic strategy in pharmacoresistant patients.  相似文献
7.
The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage.  相似文献
8.
Argyrophilic and tau-positive abnormal structures occurring in glial cells are called glial fibrillary tangles. In the astrocyte, a conspicuous tau-positive structure is known to appear in progressive supranuclear palsy (PSP). In this report, another type of argyrophilic and tau-positive astrocytes is reported. The morphology of this new type is quite different from that of the previously reported tau-positive astrocyte in PSP and they are designated here as thorn-shaped astrocytes (TSA). TSA have an apparently argyrophilic cytoplasm with a few short processes and often have a small eccentric nucleus, whose appearance resembles that of a reactive astrocyte. Immunohistochemically, TSA are positive to anti-tau antibodies but are negative for ubiquitin. Simultaneous immunostaining revealed the coexistence of tau and glial fibrillary acidic protein epitopes in the same cytoplasm. Electron microscopically, bundles of 15-nm straight tubules were included in the cytoplasm together with abundant glial filaments. In the vicinity of a cluster of TSA, related structures of perivascular or subpial tau-positive linings, which correspond to astrocytic end-feet, are sometimes observed. In almost all cases, a few TSA are generally located in a confined area of subpial and subependymal regions. Although TSA appear to be intimately associated with some diseases, they are also found in a wide range of cytoskeletal disorders including the aged brain with neurofibrillary tangles. TSA are presumed to be a secondarily induced product in relation to astrocytic reaction.  相似文献
9.
Oxidative stress, neuroinflammation, and excitotoxicity are frequently considered distinct but common hallmarks of several neurological disorders, including Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease. Although neuron degeneration and death are the ultimate consequences of these pathological processes, it is now widely accepted that alterations in the function of surrounding glial cells are key features in the progression of these diseases. In response to alteration in their local environment, microglia, commonly considered the resident immune cells of the nervous parenchyma, become activated and release a variety of soluble factors. Among these, proinflammatory cytokines and free radicals actively participate in the degenerative insults. In addition, excitotoxic neuronal damage resulting from excessive glutamate is frequently associated with impaired handling of extracellular glutamate by gliotic astrocytes. Although several research projects have focused on the biochemical mechanisms of the regulation of glial glutamate transporters, a relationship between activation of microglia and modulation of astrocytic glutamate uptake is now suggested. The aim of this review is to summarize and discuss the data showing an influence of inflammatory mediators and related free radicals on the expression and activity of glial glutamate transporters.  相似文献
10.
Esen N  Shuffield D  Syed MM  Kielian T 《Glia》2007,55(1):104-117
Gap junctions establish direct intercellular conduits between adjacent cells and are formed by the hexameric organization of protein subunits called connexins (Cx). It is unknown whether the proinflammatory milieu that ensues during CNS infection with S. aureus, one of the main etiologic agents of brain abscess in humans, is capable of eliciting regional changes in astrocyte homocellular gap junction communication (GJC) and, by extension, influencing neuron homeostasis at sites distant from the primary focus of infection. Here we investigated the effects of S. aureus and its cell wall product peptidoglycan (PGN) on Cx43, Cx30, and Cx26 expression, the main Cx isoforms found in astrocytes. Both bacterial stimuli led to a time-dependent decrease in Cx43 and Cx30 expression; however, Cx26 levels were elevated following bacterial exposure. Functional examination of dye coupling, as revealed by single-cell microinjections of Lucifer yellow, demonstrated that both S. aureus and PGN inhibited astrocyte GJC. Inhibition of protein synthesis with cyclohexamide (CHX) revealed that S. aureus directly modulates, in part, Cx43 and Cx30 expression, whereas Cx26 levels appear to be regulated by a factor(s) that requires de novo protein production; however, CHX did not alter the inhibitory effects of S. aureus on astrocyte GJC. The p38 MAPK inhibitor SB202190 was capable of partially restoring the S. aureus-mediated decrease in astrocyte GJC to that of unstimulated cells, suggesting the involvement of p38 MAPK-dependent pathway(s). These findings could have important implications for limiting the long-term detrimental effects of abscess formation in the brain which may include seizures and cognitive deficits.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号