首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础医学   1篇
神经病学   1篇
肿瘤学   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
排序方式: 共有3条查询结果,搜索用时 13 毫秒
1
1.
Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Nav1.1–Nav1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Nav1.2 and Nav1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a “proof-of-principle” experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE was without effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs in Xenopus oocytes and with many other electrophysiological approaches, validating the use of the microtransplantation procedure as a toxicologically-relevant ex vivo assay. Once fully characterized, it is likely that this approach could be expanded to study the role of environmental toxicants and contaminants on various target tissues (e.g. neural, reproductive, developmental) from many species.  相似文献   
2.
Current techniques to assess chimerism after hematopoietic stem cell transplantation (HSCT) are limited in both sensitivity and precision. These drawbacks are problematic in the context of cellular therapies that frequently result in microchimerism (donor chimerism <1%). We have developed a highly sensitive droplet digital PCR (ddPCR) assay using commercially available regents with good performance throughout the range of clinically relevant chimerism measurements, including microchimerism. We tested the assay using spiked samples of known donor-recipient ratios and in clinical samples from HSCT recipients and patients enrolled on clinical trials of microtransplantation and third-party virus-specific T cells (VSTs). The levels of detection and quantification of the assay were .008% and .023%, with high levels of precision with samples of DNA content ranging from 1 to 300?ng DNA. From the panel of 29 insertion-deletion probes multiple informative markers were found for each of 43 HSCT donor-recipient pairs. In the case of third-party cellular therapies in which there were 3 DNA contributors (recipient, HSCT donor, and T-cell donor), a marker to detect the cellular product in a background of recipient and donor cells was available for 11 of 12 cases (92%). Chimerism by ddPCR was able to quantify chimerism in HSCT recipients and comparison against standard STR analysis in 8 HSCT patients demonstrated similar results, with the advantage of fast turnaround time. Persistence of donor microchimerism in patients undergoing microtransplantation for acute myeloid leukemia was detectable for up to 57 days in peripheral blood and bone marrow. The presence of microtransplant product DNA in bone marrow T cells after cell sorting was seen in the 1 patient tested. In patients receiving third-party VSTs for treatment of refractory viral infections, VST donor DNA was detected at low levels in 7 of 9 cases. ddPCR offers advantages over currently available methods for assessment of chimerism in standard HSCT and cellular therapies.  相似文献   
3.

Aim

To study microchimerism's role and function after microtransplantation and identify novel genetic markers for microchimerism detection.

Methods

Analyzing microchimerisms from patients microtransplanted to determine the presence of GSTT1, GSTM1, SRY and other genetic markers by real-time PCR.

Results

Microchimerism could be detected for a short time after microtransplantation simultaneously with hematopoietic recovery. In conclusion, microchimerism might accelerate hematopoietic recovery and GSTT1 and GSTM1 genes could be used as genetic markers to differentiate donor cells.

Discussion

Microchimerism could exist for a short time after microtransplantation and appears to function in hematopoietic recovery. According to published reports, cytokines secreted from microchimerisms could be detected in recipients and exhibit some function on the host. Therefore, cytokines secreted from donor cells are hypothesized to accelerate hematopoietic recovery. The evidence to prove a longer existence for microchimerism is insufficient and needs supports by additional experiments; however, we cannot deny its existence just because of the limited sensitivity of methods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号