首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2085篇
  免费   629篇
  国内免费   31篇
耳鼻咽喉   4篇
儿科学   26篇
妇产科学   2篇
基础医学   212篇
口腔科学   2篇
临床医学   221篇
内科学   143篇
皮肤病学   3篇
神经病学   1817篇
特种医学   90篇
外科学   44篇
综合类   51篇
预防医学   26篇
眼科学   8篇
药学   61篇
中国医学   26篇
肿瘤学   9篇
  2024年   3篇
  2023年   76篇
  2022年   60篇
  2021年   273篇
  2020年   194篇
  2019年   196篇
  2018年   170篇
  2017年   207篇
  2016年   184篇
  2015年   194篇
  2014年   252篇
  2013年   148篇
  2012年   159篇
  2011年   126篇
  2010年   72篇
  2009年   112篇
  2008年   72篇
  2007年   54篇
  2006年   39篇
  2005年   16篇
  2004年   23篇
  2003年   12篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   8篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有2745条查询结果,搜索用时 453 毫秒
1.
Aims. Functional connectivity is providing new insights into the network nature of epilepsy with growing clinical applications. Our objective was to validate a novel magnetoencephalography‐based method to non‐invasively measure the epileptic network. Methods. We retrospectively identified pediatric and adult patients with refractory focal epilepsy who underwent pre‐surgical magnetoencephalography with subsequent intracranial electrographic monitoring. Magnetoencephalography tracings were visually reviewed, and interictal epileptiform discharges (“spikes”) were individually marked. We then evaluated differences in whole‐brain connectivity during brief epochs preceding the spikes and during the spikes using the Network‐Based Statistic to test differences at the network level. Results. In six patients with statistically‐significant network differences, we observed substantial overlap between the spike‐associated networks and electrographically active areas identified during intracranial monitoring (the spike‐associated network was 78% and 83% sensitive for intracranial electroencephalography‐defined regions in the irritative and seizure onset zones, respectively). Conclusion. These findings support the neurobiological validity of the spike‐associated network method. Assessment of spike‐associated networks has the potential to improve surgical planning in epilepsy surgery patients by identifying components of the epileptic network prior to implantation.  相似文献   
2.
《Brain stimulation》2021,14(1):161-169
BackgroundThe prediction violation account of automatic or pre-attentive change detection assumed that the inferior frontal cortex (IFC) is involved in establishing a prediction model for detecting unexpected changes. Evidence supporting the IFC’s contribution to prediction model is mainly based on the Mismatch Negativity (MMN) to deviants violating predictions that are established based on the frequently presented standard events. However, deviant detection involves processes, such as events comparison, other than prediction model establishment.ObjectiveThe current study investigated the critical role of the IFC in establishing a prediction model during standards processing for subsequent deviant detection.MethodsTranscranial Magnetic Stimulation (TMS) was applied at the IFC to disrupt the processing of the initial 2 or 5 standards of a 3-, 6-, or 9-standard train, while the MMN responses to pitch deviant presented after the standard trains were recorded and compared.ResultsAn abolishment of MMN was only observed when TMS was delivered to the IFC at the initial 2 standards of the 3-standard train, but not at the initial 5 standards, or when TMS at the vertex or TMS sound recording was applied. The MMNs were also preserved when IFC TMS, vertex TMS, or TMS sound recording was applied at the initial 2 or 5 standards of longer trains.ConclusionThe IFC plays a critical role in processing the initial standards of a short standard train for subsequent deviant detection. This result is consistent with the prediction violation account that the IFC is important for establishing the prediction model.  相似文献   
3.
A typical time series in functional magnetic resonance imaging (fMRI) exhibits autocorrelation, that is, the samples of the time series are dependent. In addition, temporal filtering, one of the crucial steps in preprocessing of functional magnetic resonance images, induces its own autocorrelation. While performing connectivity analysis in fMRI, the impact of the autocorrelation is largely ignored. Recently, autocorrelation has been addressed by variance correction approaches, which are sensitive to the sampling rate. In this article, we aim to investigate the impact of the sampling rate on the variance correction approaches. Toward this end, we first derived a generalized expression for the variance of the sample Pearson correlation coefficient (SPCC) in terms of the sampling rate and the filter cutoff frequency, in addition to the autocorrelation and cross‐covariance functions of the time series. Through simulations, we illustrated the importance of the variance correction for a fixed sampling rate. Using the real resting state fMRI data sets, we demonstrated that the data sets with higher sampling rates were more prone to false positives, in agreement with the existing empirical reports. We further demonstrated with single subject results that for the data sets with higher sampling rates, the variance correction strategy restored the integrity of true connectivity.  相似文献   
4.
《Clinical neurophysiology》2020,131(5):1087-1098
ObjectiveFunctional connectivity networks (FCNs) based on interictal electroencephalography (EEG) can identify pathological brain networks associated with epilepsy. FCNs are altered by interictal epileptiform discharges (IEDs), but it is unknown whether this is due to the morphology of the IED or the underlying pathological activity. Therefore, we characterized the impact of IEDs on the FCN through simulations and EEG analysis.MethodsWe introduced simulated IEDs to sleep EEG recordings of eight healthy controls and analyzed the effect of IED amplitude and rate on the FCN. We then generated FCNs based on epochs with and without IEDs and compared them to the analogous FCNs from eight subjects with infantile spasms (IS), based on 1340 visually marked IEDs. Differences in network structure and strength were assessed.ResultsIEDs in IS subjects caused increased connectivity strength but no change in network structure. In controls, simulated IEDs with physiological amplitudes and rates did not alter network strength or structure.ConclusionsIncreases in connectivity strength in IS subjects are not artifacts caused by the interictal spike waveform and may be related to the underlying pathophysiology of IS.SignificanceDynamic changes in EEG-based FCNs during IEDs may be valuable for identification of pathological networks associated with epilepsy.  相似文献   
5.
The orbitofrontal cortex of the monkey can be subdivided into a caudal agranular sector, a transitional dysgranular sector, and an anterior granular sector. The neural input into these sectors was investigated with the help of large horseradish peroxidase injections that covered the different sectors of orbitofrontal cortex. The distribution of retrograde labeling showed that the majority of the cortical projections to orbitofrontal cortex arises from a restricted set of telencephalic sources, which include prefrontal cortex, lateral, and inferomedial temporal cortex, the temporal pole, cingulate gyrus, insula, entorhinal cortex, hippocampus, amygdala, and claustrum. The posterior portion of the orbitofrontal cortex receives additional input from the piriform cortex and the anterolateral portion from gustatory, somatosensory, and premotor areas. Thalamic projections to the orbitofrontal cortex arise from midline and intralaminar nuclei, from the anteromedial nucleus, the medial dorsal nucleus, and the pulvinar nucleus. Orbitofrontal cortex also receives projections from the hypothalamus, nucleus basalis, ventral tegmental area, the raphe nuclei, the nucleus locus coeruleus, and scattered neurons of the pontomesencephalic tegmentum. The non-isocortical (agranular-dysgranular) sectors of orbitofrontal cortex receive more intense projections from the non-isocortical sectors of paralimbic areas, the hippocampus, amygdala, and midline thalamic nuclei, whereas the isocortical (granular) sector receives more intense projections from the dorsolateral prefrontal area, the granular insula, granular temporopolar cortex, posterolateral temporal cortex, and from the medial dorsal and pulvinar thalamic nuclei. Retrograde labeling within cingulate, entorhinal, and hippocampal cortices was most pronounced when the injection site extended medially into the dysgranular paraolfactory cortex of the gyrus rectus, an area that can be conceptualized as an orbitofrontal extension of the cingulate complex. These observations demonstrate that the orbitofrontal cortex has cytoarchitectonically organized projections and that it provides a convergence zone for afferents from heteromodal association and limbic areas. The diverse connections of orbitofrontal cortex are in keeping with the participation of this region in visceral, gustatory, and olfactory functions and with its importance in memory, motivation, and epileptogenesis.  相似文献   
6.
Intrastriatal grafts of tissue obtained from the striatal or neocortical primordia of rat fetuses have been studied with respect to their intrinsic organization and connectivity using antibodies to DARPP-32 in combination with acetylcholinesterase (AChE) histochemistry, tyrosine hydroxylase (TH) immunocytochemistry, and anterograde and retrograde axonal tracing techniques. The striatal grafts were characterized by distinct patches of DARPP-32-immunoreactive neurons, which were identical to the densely AChE-positive patches stained in adjacent sections from the same specimens. The non-patch areas possessed only few DARPP-32-positive neurons and contained only sparse AChE-positive fibres. The cortical grafts, by contrast, contained no neurons with clear-cut DARPP-32-positivity and they exhibited a sparse, evenly distributed AChE fibre network, similar to that seen in the non-patch areas of the striatal grafts. The host dopaminergic afferents, as revealed by TH immunostaining, had grown selectively into the DARPP-32-positive patches in the striatal grafts, where they formed a dense terminal network around the DARPP-32-positive cell bodies. The non-patch areas, as well as the cortical grafts, received only sparse TH innervation. By contrast, the host cortical afferents, labelled by Phaseolus vulgaris leucoagglutinin from the host frontal cortex, were seen to extend into both the patch and non-patch areas of the striatal grafts. Transplant neurons projecting into the host brain were labelled by Fluoro-Gold injections into the ipsilateral host globus pallidus. These injections labelled large numbers of medium-sized neurons within the striatal grafts and the vast majority of them (over 85%) were confined to the DARPP-32-positive patches. Similar Fluoro-Gold injections labelled only few graft neurons in the cortical grafts. The results indicate that the striatal grafts are composed of a mixture of striatal and non-striatal tissue, and that the striatal graft compartment selectively establishes afferent and efferent connections with the host nigro-pallidal system. These graft connections demonstrate a remarkable specificity in the formation of graft - host connectivity. The results, moreover, suggest that developmental properties of the grafted striatal primordium are retained and expressed in the implanted cell suspension, and that the neuronal systems of the lesioned adult host brain, at least to some extent, remain responsive to growth regulating mechanisms normally operating during ontogenetic development.  相似文献   
7.
Methamphetamine is a potent and indirect dopaminergic agonist which can cause chronic brain dysfunctions including drug abuse, drug dependence and drug-induced psychosis. Methamphetamine is known to trigger molecular mechanisms involved in associative learning and memory, and thereby alter patterns of synaptic connectivity. The persistent risk of relapse in methamphetamine abuse, dependence and psychosis may be caused by such alterations in synaptic connectivity. EphA5 receptors constitute large families of tyrosine kinase receptor and are expressed almost exclusively in the nervous system, especially in the limbic structures. Recent studies suggest EphA5 to be important in the topographic projection, development, and plasticity of limbic structures, and to be involved in dopaminergic neurotransmission. We used in situ hybridization to examine whether methamphetamine alters EphA5 mRNA expression in the brains of adult male Wister rats. EphA5 mRNA was widely distributed in the medial frontal cortex, cingulate cortex, piriform cortex, hippocampus, habenular nucleus and amygdala. Compared to baseline expression at 0 h, EphA5 mRNA was significantly decreased (by 20%) in the medial frontal cortex at 24 h, significantly increased (by 30%) in the amygdala at 9 and 24 h, significantly but transiently decreased (by 30%) in the habenular nucleus at 1 h after a single injection of methamphetamine. Methamphetamine did not change EphA5 mRNA expression in the cingulate cortex, piriform cortex or hippocampus. Our results that methamphetamine altered EphA5 mRNA expression in rat brain suggest methamphetamine could affect patterns of synaptic connectivity, which might be responsible for methamphetamine-induced chronic brain dysfunctions.  相似文献   
8.
基于功能MRI(fMRI)的功能连接(FC)分析可用于研究大脑功能异常。全脑FC模式具有高度特异性,可如指纹般视为个体识别标记,进而诊断疾病并指导临床治疗。本文对全脑FC模式及其临床应用进展进行综述。  相似文献   
9.
目前功能连通(functional connectivity)已经发展为功能磁共振(functional MRI)研究脑认知活动的一个重要方法。我们采用时间相关方法,选取后扣带回(posterior cingulated cortex,PCC)为感兴趣区(regions ofinterest,ROI),提取ROI所有体素的平均时间信号,并与其他脑区血氧依赖的磁共振(BOLD)信号进行相关,同时去除全局效应和头动误差,对14例志愿者的计算和静息数据进行组内分析和组间分析,研究逻辑计算任务下默认网络(default mode network)改变情况。结果表明默认网络受到抑制,各脑区信号改变不一致,可能是由于逻辑计算状态下各脑区BOLD信号变化不同,与PCC时间相关性发生改变所致。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号