首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1498篇
  免费   128篇
  国内免费   40篇
耳鼻咽喉   14篇
儿科学   4篇
基础医学   391篇
口腔科学   1篇
临床医学   26篇
内科学   141篇
皮肤病学   4篇
神经病学   914篇
特种医学   4篇
外科学   10篇
综合类   65篇
预防医学   10篇
眼科学   11篇
药学   55篇
中国医学   11篇
肿瘤学   5篇
  2023年   13篇
  2022年   12篇
  2021年   48篇
  2020年   28篇
  2019年   26篇
  2018年   34篇
  2017年   30篇
  2016年   33篇
  2015年   47篇
  2014年   71篇
  2013年   63篇
  2012年   68篇
  2011年   62篇
  2010年   97篇
  2009年   91篇
  2008年   81篇
  2007年   72篇
  2006年   69篇
  2005年   64篇
  2004年   62篇
  2003年   52篇
  2002年   37篇
  2001年   38篇
  2000年   30篇
  1999年   13篇
  1998年   20篇
  1997年   20篇
  1996年   14篇
  1995年   26篇
  1994年   26篇
  1993年   25篇
  1992年   29篇
  1991年   27篇
  1990年   16篇
  1989年   21篇
  1988年   21篇
  1987年   25篇
  1986年   31篇
  1985年   28篇
  1984年   23篇
  1983年   15篇
  1982年   16篇
  1981年   13篇
  1980年   10篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1666条查询结果,搜索用时 140 毫秒
1.
Astrocytes are the most widespread and heterogeneous glial cells in the central nervous system and key regulators for brain development. They are capable of receiving neurotransmitters produced by synaptic activities and regulating synaptic functions by releasing gliotransmitters as part of the tripartite synapse. In addition to communicating with neurons at synaptic levels, astrocytes can integrate into inhibitory neural networks to interact with neurons in neuronal circuits. Astrocytes are closely related to the pathogenesis and pathological processes of neurodegenerative diseases (NDs). Recently, optogenetics has now been applied to reveal the function of astrocytes in physiology and pathology. Herein, we discuss the possibility whether optogenetics could be used to control the release of gliotransmitters and regulate astrocytic membrane channels. Thus, the capability of modulating the bidirectional interactions between astrocytes and neurons in both synaptic and neuronal networks via optogenetics is evaluated. Furthermore, we discuss that manipulating astrocytes via optogenetics might be an effective way to investigate the potential therapeutic strategy for NDs.  相似文献   
2.
目前专门对化学突触硬件实现的研究较少,采用FPGA芯片技术硬件实现化学突触,对神经元网络的硬件实现具有重要价值。运用DSP Builder软件,对以Hodgkin-Huxley神经元为突触前神经元和突触后神经元的化学突触数学模型进行建模。在DSP Builder模型的基础上,将化学突触的DSP Builder模型进行合理的拆分,然后分别将各个模块在FPGA所对应的软件环境下进行编译运行,最后下载到FPGA核心芯片中,硬件实现5种基于不同机理的化学突触模型。采用相关系数法,对仿真结果和硬件结果在同一个周期内的突触前神经元动作电位、突触后神经元动作电位以及突触电流的幅值进行对比,验证硬件实现的准确性。5种硬件实现的化学突触均可以较好地传递动作电位,但是各个模型消耗资源不同,模型3所消耗的内部乘法器资源(69%),约为模型5资源(31%)的2倍,表明突触模型数学复杂度越高,其消耗的乘法器资源越多。相关系数法的对比结果显示,模型3相关度最高,为0.791 3,模型4相关度最低,为0.693 5。虽然模型3数学复杂度高、硬件资源消耗多,但是其表现的生物性最好。硬件实现的5种突触模型均能较好地呈现化学突触的单向传递性,其中模型5硬件资源消耗少、相关度高,建议以其作为化学突触硬件实现的首选。  相似文献   
3.
It has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs. The role of each individual C-type Pcdh-γ is not known. We have developed a specific antibody to Pcdh-γC4 to reveal the expression of this protein in the rat brain. The results show that although Pcdh-γC4 is expressed at higher levels in the embryo and earlier postnatal weeks, it is also expressed in the adult rat brain. Pcdh-γC4 is expressed in both neurons and astrocytes. In the adult brain, the regional distribution of Pcdh-γC4 immunoreactivity is similar to that of Pcdh-γC4 mRNA, being highest in the olfactory bulb, dentate gyrus, and cerebellum. Pcdh-γC4 forms puncta that are frequently apposed to glutamatergic and GABAergic synapses. They are also frequently associated with neuron-astrocyte contacts. The results provide new insights into the cell recognition function of Pcdh-γC4 in neurons and astrocytes.  相似文献   
4.
Santosh Kumar 《Immunology》2018,154(3):383-393
Natural killer (NK) cells express an array of germ‐line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC‐I‐specific inhibitory receptors. Signals from MHC‐I‐specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.  相似文献   
5.
Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR.Activation-induced cytidine deaminase (AID) is essential for three different genetic events: class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM), which contribute to Ig gene diversification (15). Although AID generates single-strand breaks (SSBs) in the Ig genes, subsequent repair steps for CSR and GC are similar to each other but are distinct from SHM in their mechanistic properties, i.e, in (i) generation of the double-strand breaks (DSBs), (ii) recombination, and (iii) the requirement for uracil-DNA-glycosylase (UNG) for the pairing of the DSB ends (610). Despite the similarities between GC and CSR, their repair mechanisms have distinct features: CSR recombination requires nonhomologous end joining (NHEJ), and GC depends on homologous recombination (HR). During CSR, DSB ends normally are joined by classical NHEJ (C-NHEJ), which requires specific repair proteins such as Ku80, XRCC4, or DNA ligase IV (11, 12). In the absence of C-NHEJ, a back-up end-joining pathway called “alternative end joining” (A-EJ), which is reported to be slower and also more error prone than C-NHEJ, joins the broken DSBs ends (13). On the other hand, HR, the most common form of homology-directed repair, requires long sequence homology between donor and acceptor DNA to complete the recombination step by recruiting a distinct set of repair proteins such as RAD54, RAD52, and RAD51 to the break sites (14, 15).Various studies on AID mutations in the N-terminal or C-terminal regions (4, 8, 9, 1619) have shown that N-terminal AID mutants are compromised for CSR and are defective in SHM, indicating that the N-terminal region of AID is required for DNA cleavage (9, 16, 19). On the other hand, the C-terminal region of AID, which contains a nuclear-export signal and is responsible for AID’s shuttling activity between the nucleus and cytoplasm, is required for CSR-specific activity but not for DNA cleavage activity and SHM (8, 16). Among the series of AID C-terminal mutants examined, two mutants show characteristic features: P20, which has an insertion of 34 amino acids at residue 182 and normal nuclear-cytoplasmic shuttling activity, and JP8Bdel, which has a 16-amino acid truncation at residue 183, accumulates in the nucleus, and shows higher DNA break activity at the donor switch (S) region (16, 17). Although several reports suggest that the C-terminal region of AID is involved in protein stability (20, 21), C-terminal mutants of AID stabilized by fusing the hormone-binding domain of estrogen receptor (ER) also show similar CSR-defective phenotypes (8). Taken together, these data suggest that the DNA cleavage activity and CSR-specific activity depend on different regions of AID (8, 19). In addition, the C-terminal region of AID is essential for the interaction of AID with poly (A)+ RNA via a specific cofactor (22). Because CSR requires de novo protein synthesis, we proposed that after DNA cleavage the C-terminal region of AID may be involved in the regulation of the recombination step through generation of a new protein (8, 16, 22).DSBs induced by AID during CSR ultimately are joined by the efficient DNA repair pathway that requires C-NHEJ factors such as Ku70/80 (12, 23). However, in the absence of C-NHEJ, the A-EJ pathway that relies on microhomology can join the broken DNA ends, although this pathway is associated with chromosomal translocations (11, 24). Previously, we reported that JP8Bdel enhances aberrant c-myc/IgH translocations and that it fails to carry out the efficient recombination between donor and acceptor S regions in the IgH locus (8). Therefore, it is important to examine whether the AID C-terminal mutants affect the S–S joining in CSR.In the current work we examined whether the C-terminal region of AID is involved in DNA synapse formation and recombination during CSR in CH12F3-2 and spleen B cells. We also examined the effect of AID C-terminal mutations on GC in chicken DT40 cells, which depends on HR between pseudo V genes and the downstream IgVλ region. Using these CSR- and GC-monitoring systems, we demonstrate that efficient CSR and GC require the C-terminal region of AID for the formation of DSB from SSB and subsequent end synapse. Considering these findings together, we conclude that, in addition to DNA cleavage, AID has a unique function in the generation of DSBs, which is required for S–S synapse formation and joining in CSR and recombination in GC.  相似文献   
6.
T cells play a central role in orchestrating immunity against pathogens, particularly viruses. Thus, impairing T cell activation is an important strategy employed by viruses to escape host immune control. The tyrosine kinase-interacting protein (Tip) of the T lymphotropic Herpesvirus saimiri (HVS) is constitutively present in lipid rafts and interacts with cellular Lck tyrosine kinase and p80 endosomal protein. Here we demonstrate that, due to the sequestration of Lck by HVS Tip, T cell receptor (TCR) stimulation fails to activate ZAP70 tyrosine kinase and to initiate downstream signaling events. TCR zeta chains in Tip-expressing T cells were initially phosphorylated to recruit ZAP70 molecule upon TCR stimulation, but the recruited ZAP70 kinase was not subsequently phosphorylated, resulting in TCR complexes that were stably associated with inactive ZAP70 kinase. Consequently, Tip expression not only markedly inhibited TCR-mediated intracellular signal transduction but also blocked TCR engagement with major histocompatibility complexes on the antigen-presenting cells and immunological synapse formation. These results demonstrate that a lymphotropic herpesvirus has evolved a novel mechanism to deregulate T cell activation to disarm host immune surveillance. This process contributes to the establishment and maintenance of viral latency.  相似文献   
7.
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined. In this study, we generated a novel transgenic mouse line, the APP/PS1/rTg21221 line, by crossing APP/PS1 mice, which develop Aβ‐plaques and synapse loss, with rTg21221 mice, which overexpress wild‐type human tau. When compared to the APP/PS1 mice without human tau, the cross‐sectional area of ThioS+ dense core plaques was increased by ~50%. Along with increased plaque size, we observed an increase in plaque‐associated dystrophic neurites containing misfolded tau, but there was no exacerbation of neurite curvature or local neuron loss around plaques. Array tomography analysis similarly revealed no worsening of synapse loss around plaques, and no change in the accumulation of Aβ at synapses. Together, these results indicate that adding human wild‐type tau exacerbates plaque pathology and neurite deformation but does not exacerbate plaque‐associated synapse loss.  相似文献   
8.
This article shows the ultrastructural architecture of larval zebrafish (Danio rerio) neuromuscular junctions in three dimensions. We compare classical electron microscopy fixation techniques with high‐pressure freezing followed by freeze substitution (HPF/FS) in combination with electron tomography. Furthermore, we compare the structure of neuromuscular junctions in 4‐ and 8‐dpf zebrafish larvae with HPF/FS because this allows for close‐to‐native ultrastructural preservation. We discovered that synaptic vesicles of 4‐dpf zebrafish larvae are larger than those of 8‐dpf larvae. Furthermore, we describe two types of dense‐core vesicles and quantify a filamentous network of small filaments interconnecting synaptic vesicles as well as tethers connecting synaptic vesicles to the presynaptic cell membrane. In the center of active zones, we found elaborate electron‐dense projections physically connecting vesicles of the synaptic vesicle pool to the presynaptic membrane. Overall this study establishes the basis for systematic comparisons of synaptic architecture at high resolution in three dimensions of an intact vertebrate in a close‐to‐native state. Furthermore, we provide quantitative information that builds the basis for diverse systems biology approaches in neuroscience, from comparative anatomy to cellular simulations. J. Comp. Neurol. 523:1984–1997, 2015 © 2015 Wiley Periodicals, Inc.  相似文献   
9.
Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ‐diabetic rats. The AMPA receptor‐mediated miniature excitatory postsynaptic currents (mEPSCs) and single‐channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single‐channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ‐induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment. © 2015 Wiley Periodicals, Inc.  相似文献   
10.
《Hippocampus》2018,28(8):549-556
Silent glutamatergic synapses lacking functional AMPA (α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazoleproprionate) receptors exist in several brain regions including the hippocampus. Their involvement in the dysfunction of hippocampal glutamatergic transmission in the setting of Alzheimer's disease (AD) is unknown. This study demonstrated a decrease in the percentage of silent synapses in rats microinjected with amyloid fibrils (Aβ1–40) into the hippocampal CA1. Also, pairing low‐frequency electric stimuli failed to induce activation of the hippocampal silent synapses in the modeled rats. Immunoblotting studies revealed a decreased expression of GluR1 subunits in the hippocampal CA1 synaptosomal preparation, indicating a potential reduction in the GluR1 subunits anchoring in postsynaptic density in the modeled rats. We also noted a decreased expression of phosphorylated cofilin, which regulates the function of actin cytoskeleton and receptor trafficking, and reduced expression of the scaffolding protein PSD95 in the hippocampal CA1 synaptosome in rats injected with Aβ1–40. Taken together, this study illustrates dysfunction of hippocampal silent synapse in the rodent model of AD, which might result from the impairments of actin cytoskeleton and postsynaptic scaffolding proteins induced by amyloid fibrils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号