首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  临床医学   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Objective A method for segmenting the temporalis from magnetic resonance (MR) images was developed and tested. The temporalis muscle is one of the muscles of mastication which plays a major role in the mastication system. Materials and methods The temporalis region of interest (ROI) and the head ROI are defined in reference images, from which the spatial relationship between the two ROIs is derived. This relationship is used to define the temporalis ROI in a study image. Range-constrained thresholding is then employed to remove the fat, bone marrow and muscle tendon in the ROI. Adaptive morphological operations are then applied to first remove the brain tissue, followed by the removal of the other soft tissues surrounding the temporalis. Ten adult head MR data sets were processed to test this method. Results Using five data sets each for training and testing, the method was applied to the segmentation of the temporalis in 25 MR images (five from each test set). An average overlap index (κ) of 90.2% was obtained. Applying a leave-one-out evaluation method, an average κ of 90.5% was obtained from 50 test images. Conclusion A method for segmenting the temporalis from MR images was developed and tested on in vivo data sets. The results show that there is consistency between manual and automatic segmentations.  相似文献
2.
Objective The muscles of mastication play a major role in the orodigestive system as the principal motive force for the mandible. An algorithm for segmenting these muscles from magnetic resonance (MR) images was developed and tested. Materials and methods Anatomical information about the muscles of mastication in MR images is used to obtain the spatial relationships relating the muscle region of interest (ROI) and head ROI. A model-based technique that involves the spatial relationships between head and muscle ROIs as well as muscle templates is developed. In the segmentation stage, the muscle ROI is derived from the model. Within the muscle ROI, anisotropic diffusion is applied to smooth the texture, followed by thresholding to exclude bone and fat. The muscle template and morphological operators are employed to obtain an initial estimate of the muscle boundary, which then serves as the input contour to the gradient vector flow snake that iterates to the final segmentation. Results The method was applied to segmentation of the masseter, lateral pterygoid and medial pterygoid in 75 images. The overlap indices (κ) achieved are 91.4, 92.1 and 91.2%, respectively. Conclusion A model-based method for segmenting the muscles of mastication from MR images was developed and tested. The results show good agreement between manual and automatic segmentations.  相似文献
3.
Glycogen storage disease type II (GSDII) is an autosomal recessive myopathy caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). Enzyme replacement therapy (ERT) with recombinant GAA (rh-GAA) has become available for GSDII, although its effectiveness in adults remains unknown. We present a case of ERT with rhGAA in a 49-year-old male with GSDII in a severe stage of the disease. Quantitative magnetic resonance imaging showed an increase in muscle mass of the inferior limb, especially evident on the quadriceps femoris and the patient's body weight increased up to 30%, although his reported dietary habits were the same as before ERT. Beyond improvement in muscle strength and respiratory function, we observed a dramatic increase in body mass index from 12.7 to 16.6 kg/m(2). This may reflect a change from a catabolic state to a more balanced metabolic state during ERT.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号