首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15281篇
  免费   1068篇
  国内免费   260篇
耳鼻咽喉   845篇
儿科学   195篇
妇产科学   78篇
基础医学   2410篇
口腔科学   318篇
临床医学   1764篇
内科学   2055篇
皮肤病学   85篇
神经病学   3048篇
特种医学   384篇
外科学   598篇
综合类   1065篇
现状与发展   1篇
一般理论   1篇
预防医学   1393篇
眼科学   708篇
药学   1208篇
  10篇
中国医学   282篇
肿瘤学   161篇
  2023年   214篇
  2022年   242篇
  2021年   651篇
  2020年   488篇
  2019年   527篇
  2018年   499篇
  2017年   469篇
  2016年   462篇
  2015年   442篇
  2014年   734篇
  2013年   1131篇
  2012年   675篇
  2011年   809篇
  2010年   674篇
  2009年   705篇
  2008年   775篇
  2007年   700篇
  2006年   649篇
  2005年   556篇
  2004年   491篇
  2003年   446篇
  2002年   365篇
  2001年   312篇
  2000年   282篇
  1999年   259篇
  1998年   285篇
  1997年   264篇
  1996年   226篇
  1995年   214篇
  1994年   207篇
  1993年   181篇
  1992年   154篇
  1991年   167篇
  1990年   151篇
  1989年   119篇
  1988年   115篇
  1987年   100篇
  1986年   100篇
  1985年   142篇
  1984年   126篇
  1983年   77篇
  1982年   84篇
  1981年   62篇
  1980年   54篇
  1979年   53篇
  1978年   39篇
  1977年   31篇
  1976年   26篇
  1975年   14篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
《Brain stimulation》2020,13(2):507-516
BackgroundTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique able to transiently modulate brain activity, is surging as one of the most promising therapeutic solutions in many neurological and psychiatric disorders. However, profound limitations exist in current placebo (sham) protocols that limit single- and double-blinding, especially in non-naïve subjects.ObjectiveTo ensure better blinding and strengthen reliability of tDCS studies and trials, we tested a new optimization algorithm aimed at creating an “active” sham tDCS condition (ActiSham hereafter) capable of inducing the same scalp sensations perceived during real stimulation while preventing currents from reaching the cortex and cause changes in brain excitability.MethodsA novel model-based multielectrode technique — optimizing the location and currents of a set of small electrodes placed on the scalp — was used to control the relative amount of current delivered transcranially in real and placebo multichannel tDCS conditions. The presence, intensity and localization of scalp sensations during tDCS was evaluated by means of a specifically designed questionnaire administered to the participants. We compared blinding ratings by directly addressing subjects’ ability to discriminate across conditions for both traditional (Bifocal-tDCS and Sham, using sponge electrodes) and our novel multifocal approach (both real Multifocal-tDCS and ActiSham). Changes in corticospinal excitability were monitored based on Motor Evoked Potentials (MEPs) recorded via concurrent Transcranial Magnetic Stimulation (TMS) and electromyography (EMG).ResultsParticipants perceived Multifocal-tDCS and ActiSham similarly in terms of both localization and intensity of scalp sensations, whereas traditional Bifocal stimulation was rated as more painful and annoying compared to its Sham counterpart. Additionally, differences in scalp localization were reported for active/sham Bifocal-tDCS, with Sham tDCS inducing more widespread itching and burning sensations. As for MEPs amplitude, a main effect of stimulation was found when comparing Bifocal-Sham and ActiSham (F(1,13) = 6.67, p = .023), with higher MEPs amplitudes after the application of Bifocal-Sham.ConclusionsCompared to traditional Bifocal-tDCS, ActiSham offers better participants’ blinding by inducing very similar scalp sensations to those of real Multifocal tDCS both in terms of intensity and localization, while not affecting corticospinal excitability.  相似文献   
3.
《Brain stimulation》2022,15(2):337-351
BackgroundAbnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI.MethodsSixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10–10), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity.ResultsCompared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43 mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = ?0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between stimulation sites.ConclusionThis study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.  相似文献   
4.
《Clinical neurophysiology》2021,132(12):3104-3115
ObjectiveWe aimed to establish an objective neurophysiological test protocol that can be used to assess the somatosensory nervous system.MethodsIn order to assess most fiber subtypes of the somatosensory nervous system, repetitive stimuli of seven different modalities (touch, vibration, pinprick, cold, contact heat, laser, and warmth) were synchronized with the electroencephalogram (EEG) and applied on the cheek and dorsum of the hand and dorsum of the foot in 21 healthy subjects and three polyneuropathy (PNP) patients. Latencies and amplitudes of the modalities were assessed and compared. Patients received quantitative sensory testing (QST) as reference.ResultsWe found reproducible evoked potentials recordings for touch, vibration, pinprick, contact-heat, and laser stimuli. The recording of warm-evoked potentials was challenging in young healthy subjects and not applicable in patients. Latencies were shortest within Aβ-fiber-mediated signals and longest within C-fibers. The test protocol detected function loss within the Aβ-fiber and Aδ-fiber-range in PNP patients. This function loss corresponded with QST findings.ConclusionIn this pilot study, we developed a neurophysiological test protocol that can specifically assess most of the somatosensory modalities. Despite technical challenges, initial patient data appear promising regarding a possible future clinical application.SignificanceEstablished and custom-made stimulators were combined to assess different fiber subtypes of the somatosensory nervous system using modality-specific evoked potentials.  相似文献   
5.
6.
7.
Facial motion is a primary source of social information about other humans. Prior fMRI studies have identified regions of the superior temporal sulcus (STS) that respond specifically to perceived face movements (termed fSTS), but little is known about the nature of motion representations in these regions. Here we use fMRI and multivoxel pattern analysis to characterize the representational content of the fSTS. Participants viewed a set of specific eye and mouth movements, as well as combined eye and mouth movements. Our results demonstrate that fSTS response patterns contain information about face movements, including subtle distinctions between types of eye and mouth movements. These representations generalize across the actor performing the movement, and across small differences in visual position. Critically, patterns of response to combined movements could be well predicted by linear combinations of responses to individual eye and mouth movements, pointing to a parts‐based representation of complex face movements. These results indicate that the fSTS plays an intermediate role in the process of inferring social content from visually perceived face movements, containing a representation that is sufficiently abstract to generalize across low‐level visual details, but still tied to the kinematics of face part movements.  相似文献   
8.
This study aimed at deriving occupational thresholds of toxicological concern for inhalation exposure to systemically-acting organic chemicals using predicted internal doses. The latter were also used to evaluate the quantitative relationship between occupational exposure limit and internal dose. Three internal dose measures were identified for investigation: (i) the daily area under the venous blood concentration vs. time curve, (ii) the daily rate of the amount of parent chemical metabolized, and (iii) the maximum venous blood concentration at the end of an 8-hr work shift. A dataset of 276 organic chemicals with 8-hr threshold limit values-time-weighted average was compiled along with their molecular structure and Cramer classes (Class I: low toxicity, Class II: intermediate toxicity, Class III: suggestive of significant toxicity). Using a human physiologically-based pharmacokinetic model, the three identified dose metrics were predicted for an 8-hr occupational inhalation exposure to the threshold limit value for each chemical. Distributional analyses of the predicted dose metrics were performed to identify the percentile values corresponding to the occupational thresholds of toxicological concern. Also, simple linear regression analyses were performed to evaluate the relationship between the 8-hr threshold limit value and each of the predicted dose metrics, respectively. No threshold of toxicological concern could be derived for class II due to few chemicals. Based on the daily rate of the amount of parent chemical metabolized, the proposed internal dose-based occupational thresholds of toxicological concern were 5.61?×?10?2 and 9?×?10?4 mmol/d at the 10th percentile level for classes I and III, respectively, while they were 4.55?×?10?1 and 8.5?×?10?3 mmol/d at the 25th percentile level. Even though high and significant correlations were observed between the 8-hr threshold limit values and the predicted dose metrics, the one with the rate of the amount of chemical metabolized was remarkable regardless of the Cramer class (r2 = 0.81; n = 276). The proposed internal dose-based occupational thresholds of toxicological concern are potentially useful for screening-level assessments as well as prioritization within an integrated occupational risk assessment framework.  相似文献   
9.
《Vaccine》2019,37(31):4310-4317
ONRAB® is a human adenovirus rabies glycoprotein recombinant vaccine developed to control rabies in wildlife. To support licensing and widespread use of the vaccine, safety studies are needed to assess its potential residual impact on wildlife populations. We examined the persistence of the ONRAB® vaccine virus in captive rabies vector and non-target mammals. This research complements work on important rabies vector species (raccoon, striped skunk, and red fox) but also adds to previous findings with the addition of some non-target species (Virginia opossum, Norway rats, and cotton rats) and a prolonged period of post vaccination monitoring (41 days). Animals were directly inoculated orally with the vaccine and vaccine shedding was monitored using quantitative real-time PCR applied to oral and rectal swabs. ONRAB® DNA was detected in both oral and rectal swabs from 6 h to 3 days post-inoculation in most animals, followed by a resurgence of shedding between days 17 and 34 in some species. Overall, the duration over which ONRAB® DNA was detectable was shorter for non-target mammals, and by day 41, no animal had detectable DNA in either oral or rectal swabs. All target species, as well as cotton rats and laboratory-bred Norway rats, developed robust humoral immune responses as measured by competitive ELISA, with all individuals being seropositive at day 31. Similarly, opossums showed good response (89% seropositive; 8/9), whereas only one of nine wild caught Norway rats was seropositive at day 31. These results support findings of other safety studies suggesting that ONRAB® does not persist in vector and non-target mammals exposed to the vaccine. As such, we interpret these data to reflect a low risk of adverse effects to wild populations following distribution of ONRAB® to control sylvatic rabies.  相似文献   
10.
BackgroundAssessing patients’ functional outcomes following total knee arthroplasty (TKA) with traditional scoring systems is limited by their ceiling effects. Patient’s Joint Perception (PJP) question of the reconstructed joint is also of significant interest. Forgotten Joint Score (FJS) was created as a more discriminating option. The actual score constituting a “forgotten joint” has not yet been defined. The primary objective of this study is to compare the PJP and the FJS in TKA patients to determine the FJS score that corresponds to the patient’s perception of a natural joint.MethodsOne hundred TKAs were assessed at a mean of 40.6 months of follow-up using the PJP question, FJS, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Correlation between the 3 scores and their ceiling effects were analyzed.ResultsWith PJP question, 39% of the patients perceived a natural joint (FJS: 92.9; 95% confidence interval [CI], 89.4-96.4), 12% an artificial joint with no restriction (FJS: 79.5; 95% CI, 65.7-93.3), 36% an artificial joint with minor restrictions (FJS: 70.0; 95% CI, 63.2-76.9), and 13% had major restrictions (FJS: 47.3; 95% CI. 32.8-61.7). PJP has a high correlation with FJS and WOMAC (Spearman’s rho, −0.705 and −0.680, respectively). FJS and WOMAC had a significant ceiling effect with both reaching the best possible score in >15%.ConclusionPatients perceiving their TKA as a natural knee based on PJP have a FJS ≥89. PJP has a good correlation with FJS and may be a shorter, simple, and acceptable alternative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号