首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   24篇
  国内免费   5篇
儿科学   3篇
妇产科学   1篇
基础医学   25篇
口腔科学   5篇
临床医学   36篇
内科学   99篇
皮肤病学   1篇
神经病学   14篇
特种医学   4篇
外科学   5篇
综合类   18篇
一般理论   1篇
预防医学   64篇
眼科学   5篇
药学   12篇
  1篇
中国医学   10篇
肿瘤学   11篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   33篇
  2020年   20篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   15篇
  2015年   18篇
  2014年   18篇
  2013年   25篇
  2012年   16篇
  2011年   24篇
  2010年   22篇
  2009年   18篇
  2008年   12篇
  2007年   11篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有315条查询结果,搜索用时 15 毫秒
1.
Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.

Quiescence refers to a state of cell cycle arrest in which cells are retained in a standby mode, ready to re-enter the cell cycle upon activation by a given physiological stimuli. The pool of quiescent cells in the human body is typically represented by tissue-specific stem and progenitor cells, naive immune cells, fibroblasts, and epithelial cells (1, 2). In addition, certain cancer cells have the ability to evade cancer therapy by entering a dormant quiescence-like state (1, 2). Accordingly, careful regulation of entry into and exit out of quiescence is important for several physiological processes such as tissue homeostasis and repair, stem cell maintenance, immunity, reproduction, and development (1, 2).During homeostasis, the balance between quiescent and proliferating cells is controlled by constituents of the microenvironment such as soluble factors, extracellular matrix components, blood vessels, and neighboring cells. On the other hand, during episodes that require extensive tissue renewal and remodeling, for example after injury, coordinated stimulation of quiescent cells into proliferation is facilitated by increased exposure to blood-borne and cell-secreted mitogens through local inflammatory responses such as increased blood flow, increased vascular permeability (vasodilation), and immune cell recruitment (3, 4). Accordingly, a commonly used methodology for studies of quiescence in cultured mammalian cells involves consecutive treatments with serum-free and serum-containing growth medium (1).Quiescent cells are required to maintain a high level of preparedness in order to facilitate rapid activation of specialized cell functions once cell division is stimulated. In agreement with this, quiescent stem cells and naive immune cells have been shown to possess multiple epigenetic and posttranslation mechanisms that facilitate the rapid expression of linage-specific genes following stimulation of quiescence exit (2, 514). However, little is known about mechanical forces that facilitate adaptation to cell cycle–activated behaviors.Quiescence exit is frequently associated with activation of cell motility. For example, quiescent stem and naive immune cells migrate out of their niches in response to cell cycle activation in order to support tissue homeostasis, repopulate injured tissue, or to perform immune surveillance at distal locations (1518). In addition, reawakening of dormant quiescent cancer cells can cause tumor relapse and formation of metastases years after remission (19). In multilayered epithelial tissue, like the skin, exit from quiescence during homeostasis is associated with lateral migration to suprabasal regions, while skin injury evokes massive reawakening of basally localized keratinocytes concomitant with activation of cell sheet displacement by collective migration to restore damaged epidermal surfaces (2023). The strong correlation between quiescence exit and cell migration in multiple physiological settings suggests the existence of mechanisms that link quiescence exit to activation of cell motility.The dynamics of epithelial collectives is largely regulated by mechanical forces generated through cell–cell interactions as well as interactions between cells and the extracellular environment (24). Key components involved in controlling these forces are cytoskeletal components such as actinomyosin and adhesion complexes such as adherent junctions and focal adhesion complexes (25). Additional factors that have been reported to influence the dynamic behavior of epithelial monolayers include the presence of epithelial edges (24, 26), mechanical stretching or compression (27, 28), expression of the endosomal Rab5 protein (29), exposure of cells to growth factors (3032), local changes in cell shape (33), and the ability of cells to undergo neighbor exchange (34, 35). In addition, recent studies have also identified a functional link between cell cycle progression and force fluctuation leading to dynamic behavior of cultured epithelial monolayers (36, 37).In this study, we have investigated a mechanical link between quiescence exit and activation of large-scale cell sheet displacements. Using traction force microscopy (TFM), we found that confluent cell monolayers install an actinomyosin-based system during quiescence that produces a coordinated burst of contractile forces and intercellular tension across the epithelial monolayer immediately following exposure to serum-borne mitogens. By combining experiments and theoretical modeling, we show that the amplified forces are essential for driving coordinated cell sheet displacements within otherwise motility-restricted cell monolayers. Furthermore, the magnitude of mechanical forces created during quiescence exit and the extent of cell sheet displacement correlate with quiescence depth. Our study provides evidence that quiescent keratinocyte monolayers possess mechanical preparedness for motility and establish monolayer stress amplification as a strategy for overcoming the motility barrier in confined cell sheets.  相似文献   
2.
【目的】了解厦门市学龄儿童隐匿性肾脏病的发病情况,探讨早期发现并防治慢性肾脏疾病的方法。【方法】以在厦门市居住达一年以上的3~14岁儿童为对象,抽取35 003名幼儿园及小学儿童,取晨尿进行尿液常规检验。初次尿液检查阳性者2周后复查。观察结果分四组随访(无症状血尿、无症状蛋白尿、血尿+蛋白尿、白细胞尿)。【结果】共有34 455人留晨尿行尿液筛查。初筛阳性者3 436人,初次尿筛阳性率3.0%~20.4%,平均9.51%;复查尿检阳性率0.50%~1.98%,幼儿园儿童无症状血尿阳性率1.21%、无症状蛋白尿0.03%,血尿+蛋白尿0.02%;小学生无症状血尿阳性率1.01%,蛋白尿0.19%,血尿+蛋白尿0.09%。小学生蛋白尿及血尿蛋白尿发生率显著高于幼儿园儿童(P<0.05)。【结论】①儿童集体尿筛查是发现隐匿性肾炎的有效办法;②本市儿童尿检阳性者女性多于男性,血尿阳性率高,蛋白尿阳性率低;③小学生慢性肾脏疾病的检出率高。  相似文献   
3.
EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread.  相似文献   
4.
5.
6.
Recent genomic studies challenge the conventional model that each metastasis must arise from a single tumor cell and instead reveal that metastases can be composed of multiple genetically distinct clones. These intriguing observations raise the question: How do polyclonal metastases emerge from the primary tumor? In this study, we used multicolor lineage tracing to demonstrate that polyclonal seeding by cell clusters is a frequent mechanism in a common mouse model of breast cancer, accounting for >90% of metastases. We directly observed multicolored tumor cell clusters across major stages of metastasis, including collective invasion, local dissemination, intravascular emboli, circulating tumor cell clusters, and micrometastases. Experimentally aggregating tumor cells into clusters induced a >15-fold increase in colony formation ex vivo and a >100-fold increase in metastasis formation in vivo. Intriguingly, locally disseminated clusters, circulating tumor cell clusters, and lung micrometastases frequently expressed the epithelial cytoskeletal protein, keratin 14 (K14). RNA-seq analysis revealed that K14+ cells were enriched for desmosome and hemidesmosome adhesion complex genes, and were depleted for MHC class II genes. Depletion of K14 expression abrogated distant metastases and disrupted expression of multiple metastasis effectors, including Tenascin C (Tnc), Jagged1 (Jag1), and Epiregulin (Ereg). Taken together, our findings reveal K14 as a key regulator of metastasis and establish the concept that K14+ epithelial tumor cell clusters disseminate collectively to colonize distant organs.During metastasis, cancer cells escape the primary tumor, travel through the circulation, and colonize distant organs. Conventional models of cancer progression propose that each metastasis arises from the clonal outgrowth of a single tumor cell and this conceptual framework is a foundation for models, such as epithelial-mesenchymal transition (EMT) and migratory cancer stem cells (1).Challenging the generality of the single-cell/single-metastasis model are long-standing clinical observations that tumor cell clusters (also termed “tumor clumps”) are also observed across the stages of metastasis. Tumor cell clusters are detected in the bloodstream of cancer patients (2), clusters can efficiently seed metastases (3), and though rare, circulating tumor cell (CTC) clusters have prognostic significance (4, 5). Furthermore, metastases are composed of multiple genetically distinct tumor cell clones, in mouse models of breast, pancreas, and small cell carcinoma (57), and in human metastatic prostate cancer patients (8). Taken together, these observations provide accumulating evidence that tumor cell clusters contribute to metastasis. However, they leave unresolved two important questions: how do tumor cell clusters emerge from the primary tumor, and which molecular features identify cell clusters that metastasize?An important clinical observation is that cancer cells invade the surrounding stroma as cohesive clusters in the majority of epithelial tumors, a process termed “collective invasion” (9, 10). In breast cancer, collective invasion is facilitated by invasive leader cells, a subpopulation of tumor cells that highly express keratin 14 (K14) and other basal epithelial markers (11). K14+ cells are migratory, protrusive, and lead trailing K14 cells, while maintaining cell–cell cohesion and E-cadherin–based cell contacts.In this study, we sought to understand how these K14+ cells exit collective invasion strands in the primary tumor and travel to distant organs (12). One hypothesis is that collective invasion is an intermediate step toward eventual single-cell dissemination and monoclonal metastasis. However, tumor cell clusters are detected in circulation (5) and primary human breast tumors can disseminate collectively into the surrounding extracellular matrix in ex vivo assays (1315). These data prompted an alternative hypothesis, that collectively invading K14+ cancer cells could initiate and complete the metastatic process as a cohesive multicellular unit. Here we define the clonal nature of metastases in a spontaneous mouse model of metastasis to the lungs (16, 17), in which the predominant invasive form in the primary tumor is collective invasion strands led by K14+ cells (11). We establish that the majority of metastases arise from polyclonal seeds, and show that disseminated tumor cell clusters are predominantly composed of K14+ cells. We propose a mechanism for polyclonal metastasis via the collective invasion, dissemination, and colonization of clusters of K14+ cancer cells.  相似文献   
7.
Double network hydrogels are composed of chemical and physical bonds, whose influences on the macroscopic material properties are convoluted. To decouple these, a model dually crosslinked network with independently tunable permanent and reversible crosslinks is introduced. This is realized by interlinking linear and tetra‐arm poly(ethylenegycol) (PEG) precursors with complementary reactive terminal groups. The former also carries a terpyridine ligand at each end, which forms reversible metallo‐supramolecular bonds upon addition of metal ions. These dual networks display different types and amounts of network defects, as studied by light scattering and proton double‐quantum (DQ) NMR. Dynamic light scattering suggests that the network mesh size decreases upon introduction of metal ions, as supported by a decrease of the residual dipolar coupling constant in NMR. Static light scattering indicates larger static inhomogeneities in those networks composed of stronger ions. This is complemented by a fast solid‐like component in the DQ buildup in NMR, attributed to the formation of nanoscopic clusters of charged complexes. The DQ buildup curves also suggest that the presence of strong physical bonds increases the fraction of mobile segments, like loops and dangling ends. This combined study unveils the interplay of chemical and physical bonds toward the formation of a hierarchical structure.  相似文献   
8.
Collective invasion of cancer cells is the key process of circulating tumor cell (CTC) cluster formation, and greatly contributes to metastasis. Cancer stem‐like cells (CSC) have a distinct advantage of motility for metastatic dissemination. To verify the role of CSC in the collective invasion, we performed 3D assays to investigate the collective invasion from cancer cell spheroids. The results demonstrated that CSC can significantly promote both collective and single‐cell invasion. Further study showed that CSC prefer to move outside and lead the collective invasion. More interestingly, approximately 60% of the leader CSC in collective invasion co–expressed both epithelial and mesenchymal genes, while only 4% co–expressed in single invasive CSC, indicating that CSC with hybrid epithelial/mesenchymal phenotype play a key role in cancer cell collective invasion.  相似文献   
9.
个体化教育对糖尿病患者血糖水平和自我管理能力的影响   总被引:13,自引:0,他引:13  
目的研究个体化教育对糖尿病患者血糖水平和自我管理能力的影响。方法选择118例2型糖尿病患者,分为个体化教育组和集体教育组,集体教育组每周定时进行糖尿病知识讲座;个体化教育组采取一对一的个体化指导方式。观察教育前、教育后3个月和教育后6个月空腹血糖、餐后2 h血糖、糖化血红蛋白及患者自我管理行为等方面的变化。结果①个体化教育组患者空腹血糖、餐后2 h血糖和糖化血红蛋白结果明显好于集体教育组(P<0.05)。且教育后6个月,个体化教育组患者3项指标仍在继续改善,而集体教育组患者则无进一步改善。②在自我管理能力方面,个体化教育组较集体教育组效果明显(P<0.01)。教育后6个月,个体化教育组患者自我管理能力仍维持良好,与教育后3个月相比差异无统计学意义(P>0.05);而集体教育组患者自我管理能力则明显降低,与教育后3个月相比差异具有统计学意义(P<0.05)。结论对糖尿病患者实施个体化教育能有效地控制血糖水平,提高其自我管理能力,较传统的集体化教育模式更具有优越性。  相似文献   
10.
From bird flocks to fish schools, animal groups often seem to react to environmental perturbations as if of one mind. Most studies in collective animal behavior have aimed to understand how a globally ordered state may emerge from simple behavioral rules. Less effort has been devoted to understanding the origin of collective response, namely the way the group as a whole reacts to its environment. Yet, in the presence of strong predatory pressure on the group, collective response may yield a significant adaptive advantage. Here we suggest that collective response in animal groups may be achieved through scale-free behavioral correlations. By reconstructing the 3D position and velocity of individual birds in large flocks of starlings, we measured to what extent the velocity fluctuations of different birds are correlated to each other. We found that the range of such spatial correlation does not have a constant value, but it scales with the linear size of the flock. This result indicates that behavioral correlations are scale free: The change in the behavioral state of one animal affects and is affected by that of all other animals in the group, no matter how large the group is. Scale-free correlations provide each animal with an effective perception range much larger than the direct interindividual interaction range, thus enhancing global response to perturbations. Our results suggest that flocks behave as critical systems, poised to respond maximally to environmental perturbations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号