首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   17篇
基础医学   27篇
口腔科学   1篇
临床医学   7篇
内科学   24篇
皮肤病学   5篇
神经病学   1篇
特种医学   2篇
外科学   28篇
眼科学   2篇
药学   1篇
肿瘤学   3篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   9篇
  2013年   4篇
  2012年   10篇
  2011年   8篇
  2010年   2篇
  2009年   8篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Following skin wounding, the healing outcome can be: regeneration, repair with normal scar tissue, repair with hypertrophic scar tissue or the formation of keloids. The role of chemical factors in wound healing has been extensively explored, and while there is evidence suggesting the role of mechanical forces, its influence is much less well defined. Here, we provide a brief review on the recent progress of the role of mechanical force in skin wound healing by comparing laboratory mice, African spiny mice, fetal wound healing and adult scar keloid formation. A comparison across different species may provide insight into key regulators. Interestingly, some findings suggest tension can induce an immune response, and this provides a new link between mechanical and chemical forces. Clinically, manipulating skin tension has been demonstrated to be effective for scar prevention and treatment, but not for tissue regeneration. Utilising this knowledge, specialists may modulate regulatory factors and develop therapeutic strategies to reduce scar formation and promote regeneration.  相似文献   
2.
The ability of cells to sense and respond to physical forces has been recognized for decades, but researchers are only beginning to appreciate the fundamental importance of mechanical signals in biology. At the larger scale, there has been increased interest in the collective organization of cells and their ability to produce complex, “emergent” behaviors. Often, these complex behaviors result in tissue-level control mechanisms that manifest as biological oscillators, such as observed in fireflies, heartbeats, and circadian rhythms. In many cases, these complex, collective behaviors are controlled—at least in part—by physical forces imposed on the tissue or created by the cells. Here, we use mathematical simulations to show that two complementary mechanobiological oscillators are sufficient to control fluid transport in the lymphatic system: Ca2+-mediated contractions can be triggered by vessel stretch, whereas nitric oxide produced in response to the resulting fluid shear stress causes the lymphatic vessel to relax locally. Our model predicts that the Ca2+ and NO levels alternate spatiotemporally, establishing complementary feedback loops, and that the resulting phasic contractions drive lymph flow. We show that this mechanism is self-regulating and robust over a range of fluid pressure environments, allowing the lymphatic vessels to provide pumping when needed but remain open when flow can be driven by tissue pressure or gravity. Our simulations accurately reproduce the responses to pressure challenges and signaling pathway manipulations observed experimentally, providing an integrated conceptual framework for lymphatic function.Flow of fluid within the lymphatic system is central to many aspects of physiology, including fluid homeostasis and immune function, and poor lymphatic drainage results in significant morbidity in millions of patients each year (1). Although it is known that various mechanical and chemical perturbations can affect lymphatic pumping, there are still no pharmacological therapies for lymphatic pathologies. A fundamental understanding of how various signals coordinate lymphatic vessel function is a necessary first step toward development of treatments to restore fluid balance and enhance immunosurveillance.The lymphatic system consists of fluid-absorbing initial lymphatic vessels that converge to collecting lymphatic vessels, which transport lymph through lymph nodes and back to the blood circulation (2). The collecting lymphatic vessels actively transport fluid via contractions of their muscle-invested walls. Unidirectional flow is achieved by intraluminal valves that limit back flow. Unfortunately, lymphatic pumping is not always operational, and this can lead to lymphedema and immune dysfunction (3, 4).Much is known about the mechanisms responsible for the contractions of the vessel wall. As in blood vessels, the muscle cells that line lymphatic vessels respond to changes in Ca2+ concentration. Membrane depolarization results in an influx of Ca2+ to initiate the contractions, and this process can be modulated by neurotransmitters (5) or inflammatory mediators, which generally alter the frequency and amplitude of lymphatic pumping (4, 6). Many studies have also reported that physical distension, either by applying isometric stretch or by pressurizing the vessel can affect the phasic contractions (710). Interestingly, endothelial (11) and smooth muscle cells (12) have stretch-activated ion channels that can initiate Ca2+ mobilization in response to mechanical stresses. Thus, stretch may constitute an important trigger for the contraction phase of a pumping cycle.There are also complementary mechanisms for tempering the Ca2+-dependent contractions. The most notable is nitric oxide (NO), a vasodilator that acts at multiple points in the Ca2+-contraction pathway to modulate Ca2+ release and uptake, as well as the enzymes responsible for force production (13). Blocking or enhancing NO activity can dramatically affect pumping behavior (4, 1417). Furthermore, lymphatic endothelial cells produce NO in response to fluid flow (16, 18, 19). Importantly, NO dynamics are faster than observed pumping frequencies, so flow-induced NO production is another potential mechanosignal involved in lymphatic regulation (20).  相似文献   
3.
骨重建可保持骨生物力学特性稳定,对维持骨强度具有重要意义。正常骨骼的生长和发育需要转录调控网络、信号传导通路、力学生物学及生物力学因素的紧密协调,而力学环境的改变,多种信号途径失调,影响骨的发育。长链非编码RNA(long non-coding RNA, lncRNA)是一类长度大于200 nt、生物来源广泛、2级及3级结构高度保守的RNA分子。研究显示,许多lncRNA参与骨骼系统的正常发育或平衡,调控成骨细胞的分化,以及参与骨肉瘤的发生。LncRNA表达失调与关节炎、骨质疏松症和骨癌等多种骨疾病密切相关,有望作为预测骨疾病的生物标志物。综述lncRNA的特征、参与骨重塑的lncRNA及其可能的作用机理,并讨论lncRNA作为生物标志物应用于治疗包括骨关节炎、骨质疏松症、骨癌等骨骼系统疾病的可能性,旨在为更好地理解和研究lncRNA在生物体内的作用提供参考。  相似文献   
4.
Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ∼3 µm/s has been shown to induce cell migration in the upstream direction (rheotaxis). However, the molecular biophysical mechanism that underlies upstream cell polarization and rheotaxis remains unclear. We developed a microfluidic platform to investigate the effects of IF fluid stresses imparted on cells embedded within a collagen type I hydrogel, and we demonstrate that IF stresses result in a transcellular gradient in β1-integrin activation with vinculin, focal adhesion kinase (FAK), FAKPY397, F actin, and paxillin-dependent protrusion formation localizing to the upstream side of the cell, where matrix adhesions are under maximum tension. This previously unknown mechanism is the result of a force balance between fluid drag on the cell and matrix adhesion tension and is therefore a fundamental, but previously unknown, stimulus for directing cell movement within porous extracellular matrix.Integrins and associated focal adhesion (FA) proteins form a tension-sensitive mechanical link between the extracellular matrix (ECM) and the cytoskeleton, and serve as key components in the signaling cascade by which cells transduce mechanical signals into biological responses (mechanotransduction) (1, 2). Contractile stresses generated by the cell are balanced by tractions at cell–substrate adhesions, and the FA protein vinculin accumulates at regions of high substrate stress (3, 4). The FA protein paxillin colocalizes with vinculin (4) and mediates β1-integrin FA turnover through interaction with FA kinase (FAK) (5). The FAK–paxillin signaling axis recruits vinculin to β1 integrins at regions of high matrix adhesion tension (6), and paxillin—a key mechanosensor (7)—mediates protrusion formation at regions of high stress on 2D substrates (8), and FAK–paxillin–vinculin signaling is required for mechanosensing and durotaxis (9).The tumor microenvironment imparts mechanical and chemical signals on tumor and stromal cells (10), and advanced breast carcinomas are characterized by high interstitial fluid pressure (11), an indicator of poor prognosis (12). This elevated fluid pressure drives interstitial flow (IF) and alters chemical transport within the tumor (13), and IF influences tumor cell migration through the generation of autocrine chemokine gradients (14). Equally important, although not as well understood, is the physical drag imparted on the ECM and constitutive cells (15) by IF, which is analogous to the FA-activating shear stresses generated on endothelial cells by hemodynamic forces (16). With endothelial cells, shear stress can be the dominant mechanical stimulus that induces FAK activation and cytoskeletal remodeling; however, for cells embedded within a porous matrix scaffold, the ratio of the force due to the pressure drop across the cell to the total shear force is inversely proportional to hydrogel permeability (SI Appendix, Eq. S5). In this study, we recapitulate physiologically relevant IF through collagen gel within a microfluidic device. Because the permeability of the collagen I hydrogel used in this study is small (1 × 10−13 m2), the integrated pressure force is more than 30× the integrated shear force for a 20-μm-diameter cell (17) (SI Appendix, Eq. S5). To maintain static equilibrium, all fluid stresses imparted on the cell must be balanced by tension in matrix adhesions. In 2D, the adhesions balancing the fluid drag on the cell are confined to the basal cell surface, whereas in porous media, such as breast stromal ECM, matrix adhesions are distributed across the full cell surface. Consequently, maintaining static equilibrium requires greater adhesion tension on the upstream side of the cell to balance fluid stresses. From the reference frame of the cell, the effect of IF is mechanically equivalent to applying a net outward force at matrix adhesions on the upstream side of the cell, similar to the net tensile stresses applied by use of optical tweezers to study the molecular mechanisms underlying mechanotransduction (4, 18).Here, we demonstrate that the forces required to balance drag imparted on the cell by IF induce a transcellular gradient in matrix adhesion tension, and the tensile stresses at the upstream side of the cell induce FA reorganization and polarization of FA-plaque proteins including vinculin, paxillin, FAK, FAKPY397, and α-actinin. FA polarization leads to paxillin-dependent actin localization, the formation of protrusions upstream, and rheotaxis. Consistent with the governing mechanism of durotaxis on 2D substrates, this 3D mechanotransduction occurs through FAK and requires paxillin. Importantly, silencing paxillin does not affect cell migration speed but does attenuate rheotaxis. IF is present in many tissues in vivo (19), and because FA polarization and rheotaxis result from a mechanical force balance, this 3D mechanotransduction mechanism may be fundamental to all cells embedded within porous ECM.  相似文献   
5.
The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three‐dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self‐organize into tissue‐specific structures given a correct in vitro environment. This proposition is supported by the generation of neo‐organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue‐engineering strategies may be conceptualized for generating self‐organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.  相似文献   
8.
9.
Abstract

We report an injectable hydrogel system with tunable stiffness for controlling the proliferation rate of human fibroblasts (HFF-1) in both two-dimensional (2D) and three-dimensional (3D) culture environments for potential use as a wound dressing material. The hydrogel composed of gelatin–hydroxyphenylpropionic acid (Gtn–HPA) conjugate was formed by the oxidative coupling of HPA moieties catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The stiffness of the hydrogels was controlled well by varying the H2O2 concentration. The effects of hydrogel stiffness on the proliferation rate of HFF-1 in both 2D and 3D were investigated. We found that the proliferation rate of HFF-1 using Gtn–HPA hydrogels was strongly dependent on the hydrogel stiffness, with a dimensionality-specific response. In the 2D studies, the HFF-1 exhibited a higher proliferation rate when the stiffness of the hydrogel was increased. In contrast, the HFF-1 cultured inside the hydrogel remained non-proliferative for 12 days before a stiffness-dependent proliferation profile was shown. The proliferation rate decreased with an increase in stiffness of the hydrogel in a 3D culture environment, unlike in a 2D environment.  相似文献   
10.
This study evaluated how dynamic compression induced changes in gene expression, tissue composition, and structural properties of the intervertebral disc using a rat tail model. We hypothesized that daily exposure to dynamic compression for short durations would result in anabolic remodeling with increased matrix protein expression and proteoglycan content, and that increased daily load exposure time and experiment duration would retain these changes but also accumulate changes representative of mild degeneration. Sprague‐Dawley rats (n = 100) were instrumented with an Ilizarov‐type device and divided into three dynamic compression (2 week–1.5 h/day, 2 week–8 h/day, 8 week–8 h/day at 1 MPa and 1 Hz) and two sham (2 week, 8 week) groups. Dynamic compression resulted in anabolic remodeling with increased matrix mRNA expression, minimal changes in catabolic genes or disc structure and stiffness, and increased glysosaminoglycans (GAG) content in the nucleus pulposus. Some accumulation of mild degeneration with 8 week–8 h included loss of annulus fibrosus GAG and disc height although 8‐week shams also had loss of disc height, water content, and minor structural alterations. We conclude that dynamic compression is consistent with a notion of “healthy” loading that is able to maintain or promote matrix biosynthesis without substantially disrupting disc structural integrity. A slow accumulation of changes similar to human disc degeneration occurred when dynamic compression was applied for excessive durations, but this degenerative shift was mild when compared to static compression, bending, or other interventions that create greater structural disruption. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号