排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
动物细胞培养用生物反应器及其力学环境 总被引:3,自引:0,他引:3
动物细胞体外培养时 ,生物反应器是整个培养过程的关键设备 ,为细胞提供一个适宜的生长环境 ,使之快速增殖并形成所需的生物组织制品。由于动物细胞在其形态结构、培养方法以及所需的力学环境等方面均不同于微生物细胞 ,因而传统的微生物反应器显然已不适用于动物细胞大规模培养 ,特别是组织工程的需要 ,促使新型生物反应器的研究与开发。本文针对动物细胞培养的基本特点 ,综述了动物细胞培养用生物反应器 ,并探讨了生物反应器中的力学问题 相似文献
2.
脊柱内固定的生物力学 总被引:3,自引:0,他引:3
近20年来,脊柱内固定技术得到了十分迅猛的发展。随着脊柱内固定技术在临床上越来越广泛的应用,脊柱外科正呈现出一派欣欣向荣的景象:不同种类脊柱内固定器械的问世和推广难免使人有目不暇接之感,而微创技术的进展又使手术技术发生了质的飞跃。目前脊柱内固定手术不仅可在从枕颈部至骶骨的整个脊柱上完成,而且其适应症也包括了创伤、畸形、肿瘤、感染以及退变性疾患等几乎所有脊柱疾患。本文结合有关文献,对脊柱内固定的生物力学原则及研究进展作一简要综述。 一、脊柱内固定的生物力学原则 脊柱内固定应遵循以下生物力学原则[‘]… 相似文献
3.
软骨组织工程中力学因素的影响及应用 总被引:1,自引:0,他引:1
力学因素是软骨组织工程中的重要影响因素之一。近年来的研究表明,力学作用可以刺激细胞因子及激素的分泌,改变三维支架上培养的软骨细胞的新陈代谢,从而促进软骨组织的生长与重建。目前已经有诸多关于体外构建软骨组织的报道,但对于其中的力学因素的影响(包括力学因素对软骨细胞增殖的促进及力学刺激的传导机制等)还没有完全认识。就以上几方面做一综述,并简单介绍生物反应器在软骨组织工程中的应用。 相似文献
4.
力学因素是软骨组织工程中的重要影响因素之一。近年来的研究表明,力学作用可以刺激细胞因子及激素的分泌,改变三维支架上培养的软骨细胞的新陈代谢,从而促进软骨组织的生长与重建。目前已经有诸多关于体外构建软骨组织的报道,但对于其中的力学因素的影响(包括力学因素对软骨细胞增殖的促进及力学刺激的传导机制等)还没有完全认识。就以上几方面做一综述,并简单介绍生物反应器在软骨组织工程中的应用。 相似文献
5.
破骨细胞是参与骨代谢的基本功能细胞之一.破骨细胞在骨重建过程中主要承担旧骨组织的破坏和吸收,因此,破骨细胞凋亡的微小变化都可能会改变骨重建的进程.调节破骨细胞凋亡的因素有很多,如雌激素、二磷酸盐等生物化学因素,但力学载荷对于破骨细胞生物学活性影响的研究相对较少.综述了力学载荷对破骨细胞生物学活性的影响以及细胞凋亡与破骨细胞凋亡的调节. 相似文献
6.
目的 探讨生理性周期动态力学载荷与过载对微重力致骨质疏松的作用及影响,为宇航员长时间外太空活动发生的相关骨科疾病寻找一种简便的预防或治疗方案。方法 利用尾吊的方法模拟太空微重力环境,建立小鼠骨质疏松模型。32只C57BL/6J正常小鼠随机分为正常组、尾吊组、生理性载荷组和过载组;尾吊的同时对两施加力学载荷组小鼠左侧胫骨进行周期性动态力学加载。实验4周后对比分析各组小鼠后肢胫骨力学性能、骨小梁微观参数、生化指标以及成骨相关基因表达结果。结果 与正常组相比,尾吊组小鼠胫骨松质骨大量流失,胫骨生物力学性能明显降低,骨微观结构严重破坏、成骨活性显著减弱。生理性载荷可使骨力学性能及骨小梁微观结构有明显的改善,成骨活性增强、相关基因表达显著上调(P<0.05)。过载也能改善微重力下骨质疏松的状况,但改善效果不明显(P>0.05)。结论 尾吊可成功模拟微重力环境,复制骨质疏松模型;生理性载荷可有效对抗微重力致骨质疏松的发生与发展;过载也能使得微重力所致骨质疏松有所改善,但是结果与尾吊组相比没有显著性差异。 相似文献
7.
目的研究不同强度的力学载荷对破骨细胞及其前体细胞增殖、分化和功能的影响。方法以破骨诱导液培养RAW264.7破骨前体细胞,同时施加3 d的周期性张应变,然后培养4 d;另外一组RAW264.7细胞以破骨诱导液培养4 d,将其诱导为破骨细胞,再施加3 d的周期性张应变。结果在不同张应变下,两组细胞增殖活性的变化大致相同,但细胞抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatage,TRAP)活性和破骨细胞(TRAP阳性多核细胞)数量的变化明显不同。在2 500με的中等强度张应变下,第1组的TRAP活性降幅和破骨细胞数量减幅均最高,而后者TRAP活性降幅和破骨细胞数量减幅均最低。结论不同张应变对分化初期破骨前体细胞和已分化出破骨细胞的破骨前体细胞的破骨分化和功能状态的影响有明显差异。 相似文献
8.
1