首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   38篇
  国内免费   9篇
耳鼻咽喉   2篇
儿科学   2篇
妇产科学   4篇
基础医学   81篇
口腔科学   8篇
临床医学   16篇
内科学   64篇
皮肤病学   3篇
神经病学   25篇
特种医学   4篇
外科学   21篇
综合类   23篇
预防医学   4篇
药学   49篇
中国医学   1篇
肿瘤学   66篇
  2024年   3篇
  2023年   13篇
  2022年   20篇
  2021年   19篇
  2020年   15篇
  2019年   14篇
  2018年   18篇
  2017年   16篇
  2016年   17篇
  2015年   5篇
  2014年   18篇
  2013年   21篇
  2012年   11篇
  2011年   13篇
  2010年   11篇
  2009年   16篇
  2008年   11篇
  2007年   9篇
  2006年   7篇
  2005年   4篇
  2004年   11篇
  2003年   3篇
  2002年   10篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1968年   1篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
91.
Objectives. A possible link between activation of PKC and improvement of energy metabolism during reperfusion in ischemic preconditioning hearts was examined. Methods. Isolated perfused rat hearts were preconditioned by 5-min ischemia and 5-min reperfusion in the presence and absence of a PKC inhibitor polymyxin B (50 μM) and then subjected to 40-min sustained ischemia and subsequent 30-min reperfusion. In another set of experiments, the hearts pretreated with and without a PKC activator PMA (15 pmol/5 min) were subjected to the sustained ischemia and reperfusion. Myocardial high-energy phosphates, glycolytic intermediates and mitochondrial oxygen consumption capacity were determined at appropriate experimental sequences. Results. Preconditioning enhanced the recovery of cardiac function such as left ventricular developed pressure, heart rate and rate-pressure product of the reperfused heart, suppressed the release of creatine kinase, enhanced the reperfusion-induced restoration of myocardial high-energy phosphates, attenuated the reperfusion-induced accumulation in glucose 6-phosphate and fructose 6-phosphate contents, abolished the ischemia-induced increase in tissue lactate content and prevented the ischemia-induced decrease in mitochondrial oxygen consumption capacity. Treatment of the perfused heart with PMA mimicked the effects of preconditioning on post-ischemic contractile function, enzyme release, levels of myocardial energy store, glycolytic intermediates and lactate, and mitochondrial function. Polymyxin B-treatment abolished the preconditioning-induced recovery of post-ischemic contractile function, the suppression of the release of CK, the restoration of myocardial energy store, and the preservation of mitochondrial function, whereas it did not cancel the improvement of glycolytic intermediate levels and the reduction in tissue lactate accumulation. Post-ischemic contractile function was closely related to restoration of high-energy phosphates and mitochondrial oxygen consumption capacity in all hearts subjected to ischemia/reperfusion. Conclusion. The results suggest that activation of PKC and preservation of mitochondrial function are closely linked with each other in the preconditioned heart, which may lead to the improvement of post-ischemic contractile function. Received: 29 January 1999, Returned for 1. revision: 26 February 1999, 1. Revision received: 27 April 1999, Returned for 2. revision: 18 May 1999, 2. Revision received: 12 July 1999, Returned for 3. revision: 26 July 1999, 3. Revision received: 25 October 1999, Accepted: 3 November 1999  相似文献   
92.
Recent evidence suggests that calorie restriction and specifically reduced glucose metabolism induces mitochondrial metabolism to extend life span in various model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and possibly mice. In conflict with Harman’s free radical theory of aging (FRTA), these effects may be due to increased formation of reactive oxygen species (ROS) within the mitochondria causing an adaptive response that culminates in subsequently increased stress resistance assumed to ultimately cause a long-term reduction of oxidative stress. This type of retrograde response has been named mitochondrial hormesis or mitohormesis, and may in addition be applicable to the health-promoting effects of physical exercise in humans and, hypothetically, impaired insulin/IGF-1-signaling in model organisms. Consistently, abrogation of this mitochondrial ROS signal by antioxidants impairs the lifespan-extending and health-promoting capabilities of glucose restriction and physical exercise, respectively. In summary, the findings discussed in this review indicate that ROS are essential signaling molecules which are required to promote health and longevity. Hence, the concept of mitohormesis provides a common mechanistic denominator for the physiological effects of physical exercise, reduced calorie uptake, glucose restriction, and possibly beyond.  相似文献   
93.
Summary

Background: The dissociation of mechanical from non-mechanical energy utilisation can be studied using BDM (2,3-butanedione monoxime), which inhibits the actin-myosin interaction without inhibiting Ca2+ transport. The objective of the present study was to establish if increasing the non-mechanical energy demand of perfused isolated pig hearts by dobutamine stimulation requires glycolysis with increased exogenous glucose uptake.

Methods: Five isolated pig hearts (CTRL) were perfused for 90?min at constant flow (1?ml?g?1?min?1) with non-recirculating blood containing 30?mM BDM and 26?MBq/l of fluorine-18 2-fluoro-2-deoxyglucose (18FDG). This was compared with five hearts (DOBU) subjected to the same protocol for the first 30?min and then to dobutamine (1.5?μM) for the following 30?min and dobutamine (4?μM) for the last 30?min. Five other isolated hearts were perfused as for the DOBU group but without BDM (CTRLDOBU). Using a clinical PET scanner, glucose uptake was assessed by estimating 18FDG uptake using linear regression. The slope variations were compared using a global test of coincidence.

Results: Heart rate was at 100?±?2 b.p.m. in the CTRL group and at 180?±?7 b.p.m. in the DOBU group. 18FDG uptake was homogeneous within the whole myocardium and we observed a linear and regular increase in both the CTRL and DOBU groups (p, NS). In the CTRLDOBU group, 18FDG uptake was also homogeneous within the whole myocardium, but slopes of 18FDG uptake during dobutamine perfusion were higher than without dobutamine.

Conclusion: In blood-perfused isolated pig hearts, exogenous glucose is not necessarily required when non-mechanical energy is increased by dobutamine stimulation. These findings suggest that ATP derived from glycolysis is not necessary to preserve myocardial Ca2+ transport during β-adrenergic stimulation.  相似文献   
94.
Carnosine is a natural dipeptide that has generated particular interest for its antioxidant, anti-aging and especially for its antiproliferative properties. In this study, we demonstrate that carnosine inhibits the proliferation of human HCT116 colon cancer cells. In this cell line, the activating KRAS mutation induces mitochondrial ROS, the signaling molecules for cell proliferation. We observed that 50-100 mM carnosine decreases ATP and ROS concentration and induces cell cycle arrest in G1 phase. In HCT116 cells these effects are related to decreased ERK1/2 phosphorylation and increased p21waf1 protein. Our findings support the concept that carnosine could inhibit HCT116 cell growth via its antioxidant activity and its ability to affect glycolysis.  相似文献   
95.
It is unknown what effects high levels of fatty acids have on energy metabolism and cardiac efficiency during milder forms of ischemia. To address this issue, isolated working rat hearts perfused with Krebs-Henseleit solution (5 mM glucose, 100 μU/mL insulin, and 0.4 (Normal Fat) or 1.2 mM palmitate (High Fat)) were subjected to 30 min of aerobic perfusion followed by 30 min of mild ischemia (39% reduction in coronary flow). Both groups had similar aerobic function and rates of glycolysis, however the High Fat group had elevated rates of palmitate oxidation (150%), and decreased rates of glucose oxidation (51%). Mild ischemia decreased cardiac work (56% versus 40%) and efficiency (29% versus 11%) further in High Fat hearts. Palmitate oxidation contributed a greater percent of acetyl-CoA production during mild ischemia in the High Fat group (81% versus 54%). During mild ischemia glycolysis remained at aerobic levels in the Normal Fat group, but was accelerated in the High Fat group. Triglyceride, glycogen and adenine nucleotide content did not differ at the end of mild ischemia, however glycogen turnover was double in the High Fat group (248%). Addition of the pyruvate dehydrogenase inhibitor dichloroacetate to the High Fat group resulted in a doubling of the rate of glucose oxidation and improved cardiac efficiency during mild ischemia. We demonstrate that fatty acid oxidation dominates as the main source of residual oxidative metabolism during mild ischemia, which is accompanied by suppressed cardiac function and efficiency in the presence of high fat.  相似文献   
96.
97.
The proximal tubules of newborn and adult animals reabsorb a similar fraction of the filtered load of Na+ and H2O (65%–70%). In tubules from adult animals, transcellular, active Na+ reabsorption accounts for one-third of the total, while two-thirds occur passively through the paracellular pathway, driven by hydrostatic and oncotic forces (one-third) and by cell-generated effective osmotic and ionic gradients (one-third). Since two-thirds of the Na+ is reabsorbed passively and does not require energy, the mature proximal tubule has a high Na+/O2 molar ratio (48 Eq of Na+/mol of O2). Measurements of ouabain-sensitive oxygen consumption in suspensions of proximal tubules indicate that in newborn, aerobic metabolism can support about 50% of the net Na+ transport rate compared with the 33% in tubules from adult animals. Independent confirmation of the direct and proportional relationship between active Na+ transport and ouabain-sensitive O2 consumption exists for the adult but not for the newborn. However, measurements of epithelial conductances and of transepithelial hydrostatic and oncotic pressure differences indicate that passive paracellular fluxes can account for the remaining 50% of the proximal Na+ reabsorption in newborn. The high permeability of the proximal tubules of newborn animals to small molecular weight solutes suggests that cell-generated osmotic and ionic transepithelial gradients are minimal in the tubules of newborn animals. Yet in the newborn, the osmolality of the end proximal tubule fluid was found to exceed that in plasma. This indicates that osmotic gradients due to differences in reflection coefficients for preferentially reabsorbed solutes and Cl do exist across the proximal tubules of the newborn and suggests that these gradients may contribute to Na+ and H2O reabsorption. If this is indeed the case, then the contribution of active and of hydrostatic and oncotic pressure-driven flows to the overall reabsorption of Na+ and fluid has been overestimated. Resolution of this discrepancy requires measurements of the reflection coefficients for HCO 3 and Cl in the proximal tubule of the newborn. The metabolic processes by which energy is supplied to renal proximal cells during development are also incompletely characterized. There is evidence that maturation of aerobic metabolism, Krebs cycle enzymes activity, and of the mitochondrial membrane surface area precede the development of net reabsorptive transport (Na+, H2O, HCO3, glucose). By contrast, maturation of Na+–K+-ATPase activity at the basolateral cell membrane follows that in reabsorptive transport and does not limit its development. The extent to which age-related changes in reabsorptive fluxes are due to the development of luminal membrane transport systems, to the decrease in paracellular permeability, or both remains to be determined. The high activity of enzymes in the hexosemonophosphate pathway and the high NADH/NAD ratio present during the first few weeks of extrauterine life poise the proximal tubules for high rates of biosynthesis of membrane lipids, glycoproteins, nucleic acids, and transporter proteins necessary for final differentiation.  相似文献   
98.
鼻咽癌是一种具有地域分布性的鼻咽上皮恶性肿瘤,放疗抵抗是鼻咽癌患者治疗失败的主要原因。代谢重编程是调控肿瘤发生发展的核心,代谢变化能够影响肿瘤的发生、发展及治疗抵抗。糖酵解、氧化磷酸化、脂肪酸氧化等代谢途径均参与肿瘤放疗敏感性的调控。肿瘤微环境变化、基因突变或基因异常表达、基因表观遗传修饰或某些信号通路异常激活是调控鼻咽癌放疗抵抗的主要机制。近年来,越来越多的研究显示,代谢重编程在鼻咽癌放疗抵抗中扮演了重要角色,可通过调控DNA损伤修复、细胞周期、凋亡与自噬、肿瘤细胞干性和免疫反应等来调节鼻咽癌细胞的放疗抗性。靶向代谢重编程可为鼻咽癌放疗增敏提供新的策略和思路。  相似文献   
99.
Hippocampal structural changes associated with diabetes-related cognitive impairments are well described, but their molecular background remained vague. We examined whether/how diabetes alters molecular basis of energy metabolism in hippocampus readily after diabetes onset, with special emphasis on its redox-sensitivity.To induce diabetes, adult Mill Hill hybrid hooded rats received a single alloxan dose (120 mg/kg). Both non-diabetic and diabetic groups were further divided in two subgroups receiving (i) or not (ii) superoxide dismutase (SOD) mimic, [Mn(II)(pyane)Cl2] for 7 days, i.p. Treatment of the diabetic animals started after blood glucose level ≥12 mM.Diabetes decreased protein levels of oxidative phosphorylation components: complex III and ATP synthase. In contrast, protein amounts of glyceraldehyde-3-phosphate dehydrogenase, pyruvate dehydrogenase, and hypoxia-inducible factor-1α – the key regulator of energy metabolism in stress conditions, were higher in diabetic animals. Treatment with SOD mimic restored/increased the levels of oxidative phosphorylation components and returned hypoxia-inducible factor-1α to control level, while diabetes-induced up-regulation of glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, was additionally stimulated.To conclude, our results provide insight into the earliest molecular changes of energy-producing pathways in diabetes that may account for structural/functional disturbance of hippocampus, seen during disease progression. Also, data suggest [Mn(II)(pyane)Cl2] as potential therapeutic agent in cutting-edge approaches to threat this widespread metabolic disorder.  相似文献   
100.
BACKGROUND: Endothelial dysfunction in sepsis is a pathophysiological feature of septic organ failure. Endothelial cells (ECs) exhibit specific metabolic traits and release metabolites to adapt to the septic state in the blood to maintain vascular homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号