首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   15篇
  国内免费   2篇
儿科学   2篇
妇产科学   1篇
基础医学   54篇
口腔科学   4篇
临床医学   7篇
内科学   17篇
皮肤病学   2篇
神经病学   98篇
特种医学   2篇
外科学   3篇
综合类   8篇
预防医学   2篇
眼科学   2篇
药学   16篇
中国医学   3篇
肿瘤学   19篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   15篇
  2009年   15篇
  2008年   31篇
  2007年   15篇
  2006年   11篇
  2005年   17篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1989年   1篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
81.
Antibodies to functional AMPA/kainate (GluR1, GluR2, GluR3), and kainate binding sites (GluR5–7) were used as probes to characterize and quantitate glutamatergic receptor subtypes in human post-mortem brain tissue from schizophrenic subjects and non-psychotic control subjects, which included normal controls and subjects with a previous history of alcohol abuse. Crude membrane fractions from human hippocampi and cingulate cortices were fractionated by SDS-PAGE, electrotransferred to nitrocellulose, and probed for the various glutamate receptor subytpes. Western blots were developed with chemilluminescence and the images analyzed by densitometry. Significant reductions were observed in the hippocampal immunoreactivity of both GluR2 and GluR3 AMPA/kainate receptor subtypes in schizophrenic subjects compared to the entire group of non-psychotic control subjects. No significant changes were observed in schizophrenic hippocampal GluR1 and GluR5 receptor subtypes or in levels of the structural control proteins, NCAM and tau. Significant increases were observed for GluR2 and GluR3 in the hippocampi of subjects with alcohol abuse histories when compared to the non-psychotic normal control group. When subjects with alcohol abuse histories were removed from the non-psychotic control pool, schizophrenics were no longer statistically different from the remaining normal controls. An analysis of GluR2 and GluR3 immunoreactivity in the cingulate cortex revealed no changes in these receptor subtypes among any of the groups. No alterations were observed in the immunoreactivity of these various proteins due to confounding factors such as age, sex, postmortem interval, or smoking history, except in the cingulate cortex were GluR3 receptor subtype levels were significantly reduced in the brains of smokers. These results generally do not support a role for the non-NMDA type glutamatergic receptors in schizophrenia. However, the role of chronic ethanol exposure on the human brain needs to be further investigated, and underscores the importance of defined control tissue for human postmortem studies.  相似文献   
82.
BACKGROUND: Some malignant salivary gland tumors are known for their propensity to exhibit perineural invasion and vascular metastases. It was hypothesized that alterations in the expression of cell adhesion molecules are involved in these processes. METHODS: The expression and distribution of neural cell adhesion molecule (NCAM), HCAM (CD44), platelet-endothelial cell adhesion molecule-1 (PECAM-1), and intercellular cell adhesion molecule-1 (ICAM-1) in normal salivary gland tissues and selected salivary gland malignancies, especially adenoid cystic carcinoma (AdCyCa) and polymorphous low-grade adenocarcinoma (PMLG), were determined immunohistochemically, and their influence on histologically demonstrated perineural invasion, vascular invasion, and tumor recurrence/patient death were investigated. RESULTS: NCAM, HCAM, and ICAM-1 were often found to be expressed by neoplastic cells, but no correlation to perineural invasion, tumor behavior, or patient prognosis was found. PECAM-1 was rarely and only focally expressed in three tumors, all of which were related to tumor metastases and patient death. CONCLUSIONS: Immunohistochemical demonstration of NCAM, HCAM, and ICAM-1 is not related to perineural invasion or tumor behavior. PECAM-1 expression was related to vascular invasion and poor patient prognosis in three cases.  相似文献   
83.
Spinal cord injury (SCI) is one of the major disabilities dealt with in clinical rehabilitation settings and is multifactorial in that the patients suffer from motor and sensory impairments as well as many other complications throughout their lifetimes. Many clinical trials have been documented during the last two decades to restore damaged spinal cords. However, only a few pharmacological therapies used in clinical settings which still have only limited effects on the regeneration and functional recovery. This review presents recent clinical trials and recent advances in the development of strategies to restore locomotion after SCI. Several approaches toward functional recovery in SCI succeeded in acute and subacute phases in animal models.However, effective strategies against chronic phase of SCI have not been established yet. The strategy aiming to inhibit single molecule sometimes shows controversial results. In SCI, a lot of players participate in motor and sensory dysfunctions. Therefore, sufficient functional recovery may be achieved by regulating multiple targets. Regrowth of tracts connecting the brain and spinal cord, and axonal sprouting of propriospinal interneurons are fundamentally important for neuronal network working. In addition, remyelination, protection of neuronal death, inhibition of inflammation, and upregulation of beneficial influence of astrocytes are also quite crucial to supporting the axonal refining. Combination of several strategies might be useful as practical therapy. Several compounds such as a Sema3A inhibitor, estrogen, withanoside IV and their relating compounds or other neurotrophic factor-mimicking agents may be candidates for useful SCI therapeutic drugs since those have multi-effects on damaged spinal cord.  相似文献   
84.
The hypothalamo-neurohypophyseal system displays significant plasticity when subjected to physiological stimuli, such as dehydration, parturition, or lactation. This plasticity arises at the neurochemical and electrophysiological levels but also at a structural level. Several studies have demonstrated the role of monoaminergic afferents in controlling neurochemical and electrophysiological plasticity of the supraoptic nucleus (SON) and of the neurohypophysis (NH), but little is known about how the changes in structural plasticity are triggered. We used Tg8 mice, disrupted for the monoamine oxidase A gene, to study monamine involvement in the architecture of the SON and of the NH. SON astrocytes in Tg8 mice displayed an active status, characterized by an increase in S100β expression and a significant decrease in vimentin expression, with no modification in glial fibrillary acidic protein (GFAP) levels. Astrocytes showed a decrease in glutamate dehydrogenase (GDH) levels, whereas glutamine synthetase (GS) levels remained constant, suggesting a reduction in astrocyte glutamate catabolism. Tenascin C and polysialic acid-neural cell adhesion molecule (PSA-NCAM) expressions were also elevated in the SON of Tg8 mice, suggesting an increased capacity for structural remodelling in the SON. In the NH, similar date were obtained with a stability in GFAP expression and an increase in PSA-NCAM immunostaining. These results establish monoamine (serotonin and noradrenaline) involvement in SON and NH structural arrangement. Monoamines therefore appear to be crucial for the coordination of the neurochemical and structural aspects of neuroendocrine plasticity, allowing the hypothalamo-neurohypopyseal system to respond appropriately when stimulated.  相似文献   
85.
Septal cholinergic neurons project to the hippocampus and release acetylcholine, a neurotransmitter involved in learning and memory. The enzyme choline acetyltransferase (ChAT) is responsible for synthesizing acetylcholine. Promoting ChAT activity and acetylcholine release can lead to new treatments for neurodegenerative diseases with cholinergic deficits, such as Alzheimer's disease. We present evidence that the synthetic molecule C3d, which is a peptide mimetic of the neural cell adhesion molecule (NCAM), promotes ChAT activity in cultures of rat embryonic septal neurons. Our data demonstrate that ChAT activity triggered by C3d is dependent on the fibroblast growth factor receptor (FGFR) and the mitogen-activated protein kinase (MAPK) pathway. C3d did not affect the number of cholinergic neurons in culture, indicating that NCAM homophilic binding enhances ChAT activity, without affecting cholinergic cell survival. In conclusion, the NCAM mimetic peptide C3d promotes ChAT activity in septal neurons through FGFR and MAPK. These findings are relevant to the design of new strategies aimed at stimulating cholinergic function and improving cognition in disorders such as Alzheimer's disease.  相似文献   
86.
Neural cell adhesion molecule, NCAM, is an important regulator of neuronal process outgrowth and synaptic plasticity. Transgenic mice that overexpress the soluble NCAM extracellular domain (NCAM-EC) have reduced GABAergic inhibitory and excitatory synapses, and altered behavioral phenotypes. Here, we examined the role of dysregulated NCAM shedding, modeled by overexpression of NCAM-EC, on development of GABAergic basket interneurons in the prefrontal cortex. NCAM-EC overexpression disrupted arborization of basket cells during the major period of axon/dendrite growth, resulting in decreased numbers of GAD65- and synaptophysin-positive perisomatic synapses. NCAM-EC transgenic protein interfered with interneuron branching during early postnatal stages when endogenous polysialylated (PSA) NCAM was converted to non-PSA isoforms. In cortical neuron cultures, soluble NCAM-EC acted as a dominant inhibitor of NCAM-dependent neurite branching and outgrowth. These findings suggested that excess soluble NCAM-EC reduces perisomatic innervation of cortical neurons by perturbing axonal/dendritic branching during cortical development.  相似文献   
87.
88.
Prolonged exposure to opiates induces a constellation of neuroadaptations, especially in the mesolimbic dopamine system (MLDS), which leads to alteration in the function of motivational circuitry. The neural cell adhesion molecule (NCAM) mediates cell–cell interactions and plays an important role in processes associated with neural plasticity. Moreover, it has been shown that NCAM were related to risk of alcoholism in human populations. Here, coimmunoprecipitation and western blotting were used to investigate whether morphine treatment induced alteration of the expression of NCAM or its signaling level in MLDS. The rats receiving escalating dose of morphine treatment were divided into three groups: morphine 1d, 3d and 5d group, which were injected subcutaneously with morphine hydrochloride for 1?day, 3 days and 5 days, respectively. Twelve?hours after the last injection, animals were sacrificed and the tissues of ventral tegmental area (VTA), prefrontal cortex (PFC) and nucleus accumbens (NAc) were punched out to examine the expression of NCAM or its signaling level. The results showed that morphine treatment had no significant effect on the expression of NCAM, but downregulated the phosphorylation of NCAM-associated focal adhesion kinase (FAK) in the VTA and PFC of rats. In the NAc of rats, however, the expression of NCAM and its signaling were not altered significantly by morphine treatment. These results indicated that the downregulation of NCAM signaling in the VTA and PFC might be involved in the formation of morphine addiction.  相似文献   
89.
While there is now substantial evidence that 5-HT(6) antagonism leads to significantly improved cognitive ability, the mechanism(s) and/or pathway(s) involved are poorly understood. We have evaluated the consequence of chronic administration of the 5-HT(6) receptor antagonists SB-271046 and SB-399885 on neural cell adhesion molecule polysialylation state (NCAM PSA), a neuroplastic mechanism necessary for memory consolidation. Quantitative analysis of NCAM PSA immunopositive neurons in the dentate gyrus of drug-treated animals revealed a dose-dependent increase in polysialylated cell frequency following treatment with both SB-271046 and SB-399885. These effects could not be attributed to increased neurogenesis, as no difference in the rate of bromodeoxyuridine incorporation was apparent between the control and drug-treated groups. A substantial increase in the frequency of polysialylated cells in layer II of the entorhinal and perirhinal cortices was also observed, brain regions not previously associated with neurogenesis. Chronic treatment with SB-271046 or SB-399885 also significantly increased the activation of dentate polysialylation that is specific to learning. This effect does not occur with other cognition-enhancing drugs, such as tacrine, and this action potentially differentiates 5-HT(6) receptor antagonism as an unique neuroplastic mechanism for cognitive processes which may slow or reverse age/neurodegenerative related memory deficits.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号