首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   9篇
  国内免费   2篇
基础医学   16篇
口腔科学   9篇
临床医学   5篇
内科学   8篇
特种医学   1篇
外科学   16篇
综合类   7篇
预防医学   1篇
药学   1篇
肿瘤学   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2015年   6篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
41.
Objectives: The aim of the present study is to investigate the morphological and cellular changes in dental extraction socket that has been irradiated after the tooth extraction and to describe morphological characteristics of the osteocytes and osteocyte-lacunar-canalicular network (LCN) by scanning electron microscopy (SEM). Material and methods: Five beagle dogs aged 1–2 years were used in this study. One side of each mandible was irradiated in two sessions and the other side of mandible (non-irradiated) served as a control. The mandible bone blocks were processed by bulk staining en bloc in basic fuchsin and the specimens were embedded routinely in polymethyl methacrylate resin without preliminary decalcification. All blocks were subjected to micro-CT imaging, after that the specimens were prepared for light microscopy and SEM. Results: Alterations in bone macrostructure are minimal in irradiated bone, but the changes in LCN are clear. In the area of the tooth extraction socket, the connections of osteocytes to the vessels and to neighboring osteocytes were not observed both in irradiated and nonirradiated bone. However, osteoclasts were located in the bone surface entering inside to the bone between osteons. In the lamellar bone of lateral sides, a decrease in canalicular connections between osteocytes and periosteum was found in irradiated bone as compared to the non-irradiated side. Conclusions: The novelty of the present study is that radiation disrupts osteocytes and their dendrites.  相似文献   
42.
The effects of metal ion exposure on osteocytes, the most abundant cell type in bone and responsible for coordinating bone remodeling, remain unclear. However, several studies have previously shown that exposure to cobalt (Co2+) and chromium (Cr3+), at concentrations equivalent to those found clinically, affect osteoblast and osteoclast survival and function. In this study, we tested the hypothesis that metal ions would similarly impair the normal physiology of osteocytes. The survival, dendritic morphology, and response to fluid shear stress of the mature osteocyte‐like cell‐line MLO‐Y4 following exposure to clinically relevant concentrations and combinations of Co and Cr ions were measured in 2D‐culture. Exposure of MLO‐Y4 cells to metal ions reduced cell number, increased dendrites per cell and increased dendrite length. We found that combinations of metal ions had a greater effect than the individual ions alone, and that Co2+ had a predominate effect on changes to cell numbers and dendrites. Combined metal ion exposure blunted the responses of the MLO‐Y4 cells to fluid shear stress, including reducing the intracellular calcium responses and modulation of genes for the osteocyte markers Cx43 and Gp38 , and the signaling molecules RANKL and Dkk‐1 . Finally, we demonstrated that in the late osteoblasts/early osteocytes cell line MLO‐A5 that Co2+ exposure had no effect on mineralization, but Cr3+ treatment inhibited mineralization in a dose‐dependent manner, without affecting cell viability. Taken together, these data indicate that metal exposure can directly affect osteocyte physiology, with potential implications for bone health including osseointegration of cementless components, and periprosthetic bone remodeling. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1716–1723, 2017.
  相似文献   
43.
44.
目的观察1,25(OH)_2D_3对去卵巢大鼠骨组织中成骨细胞、骨细胞凋亡的影响。方法 36只雌性SD大鼠随机分成四组,对尼尔雌醇组和1,25(OH)_2D_3组分别给予尼尔雌醇(0.1mg/kg)和1,25(OH)_2D_3(0.05μg/kg)治疗12周。12周后,以DXA法测定大鼠全身的骨密度;放射免疫法测定各组大鼠血清中骨钙素及雌二醇的水平;处死各组大鼠,采用3′-OH末端DNA原位标记技术和透射电镜检测骨细胞、成骨细胞凋亡。结果 12周后,去卵巢组大鼠的骨密度和血清雌二醇水平明显降低,骨钙素含量升高,与假手术组相比,差异有显著性(P0.05)。1,25(OH)_2D_3可以增加去卵巢大鼠的全身骨密度和血清骨钙素含量(P0.05),但是不增加血清雌二醇的水平(P0.05)。1,25(OH)_2D_3可以抑制骨细胞、成骨细胞凋亡,与去卵巢组相比差异有显著性(P0.05)。结论 1,25(OH)_2D_3对去卵巢大鼠骨质疏松症具有防治作用,其部分机制可能为1,25(0H)_2D_3抑制了骨细胞、成骨细胞凋亡,从而调节骨重建。  相似文献   
45.
Osteocytes acquire their stellate shape during the process of changing from osteoblasts in bone. Throughout this process, dynamic cytoskeletal changes occur. In general, changes of the cytoskeleton affect cellular mechanical properties. Mechanical properties of living cells are connected with their biological functions and physiological processes. In this study, we for the first time analyzed elastic modulus, a mechanical property of bone cells. Bone cells in embryonic chick calvariae and in isolated culture were identified using fluorescently labeled phalloidin and OB7.3, a chick osteocyte-specific monoclonal antibody, and then observed by confocal laser scanning microscopy. The elastic modulus of living cells was analyzed with atomic force microscopy. To examine the consequences of focal adhesion formation on the elastic modulus, cells were pretreated with GRGDS and GRGES, and then the elastic modulus of the cells was analyzed. Focal adhesions in the cells were visualized by immunofluorescence of vinculin. From fluorescence images, we could distinguish osteoblasts, osteoid osteocytes and mature osteocytes both in vivo and in vitro. The elastic modulus of peripheral regions of cells in all three populations was significantly higher than in their nuclear regions. The elastic modulus of the peripheral region of osteoblasts was 12053+/-934 Pa, that of osteoid osteocytes was 7971+/-422 Pa and that of mature osteocytes was 4471+/-198 Pa. These results suggest that the level of elastic modulus of bone cells was proportional to the stage of changing from osteoblasts to osteocytes. The focal adhesion area of osteoblasts was significantly higher than that of osteocytes. The focal adhesion area of osteoblasts was decreased after treatment with GRGDS, however, that of osteocytes was not. The elastic modulus of osteoblasts and osteoid osteocytes were decreased after treatment with GRGDS. However, that of mature osteocytes was not changed. There were dynamic changes in the mechanical property of elastic modulus and in focal adhesions of bone cells.  相似文献   
46.
47.
48.
Multiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.  相似文献   
49.
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1‐Cre or ERαf/f;Osx1‐Cre) or myeloid cell lineage (ARf/y;LysM‐Cre or ERαf/f;LysM‐Cre) and their descendants. Male ARf/y;Prx1‐Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM‐Cre, ERαf/f;Osx1‐Cre, or ERαf/f;LysM‐Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1‐Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). © 2015 American Society for Bone and Mineral Research.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号