首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1068篇
  免费   41篇
  国内免费   5篇
耳鼻咽喉   9篇
儿科学   12篇
妇产科学   1篇
基础医学   140篇
口腔科学   47篇
临床医学   26篇
内科学   143篇
神经病学   234篇
特种医学   8篇
外科学   72篇
综合类   38篇
预防医学   33篇
眼科学   66篇
药学   263篇
中国医学   21篇
肿瘤学   1篇
  2023年   9篇
  2022年   9篇
  2021年   78篇
  2020年   36篇
  2019年   30篇
  2018年   19篇
  2017年   28篇
  2016年   25篇
  2015年   33篇
  2014年   38篇
  2013年   60篇
  2012年   36篇
  2011年   51篇
  2010年   59篇
  2009年   50篇
  2008年   50篇
  2007年   46篇
  2006年   35篇
  2005年   33篇
  2004年   30篇
  2003年   23篇
  2002年   22篇
  2001年   18篇
  2000年   16篇
  1999年   15篇
  1998年   13篇
  1997年   8篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   11篇
  1991年   6篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1987年   4篇
  1986年   8篇
  1985年   22篇
  1984年   7篇
  1983年   12篇
  1982年   13篇
  1981年   12篇
  1980年   14篇
  1979年   12篇
  1978年   19篇
  1977年   11篇
  1976年   10篇
  1975年   6篇
  1973年   7篇
排序方式: 共有1114条查询结果,搜索用时 18 毫秒
51.
Post-tensioned anchorage zones need enough strength to resist large forces from jacking forces from prestress and need spiral reinforcement to give confinement effect. High-strength concrete (HSC) has high-strength and brings the advantage of reducing material using and simplifying reinforcing. We tested strain stabilization, load–displacement, and strain of lateral reinforcements. Specimens that used one and two lateral reinforcements without spiral reinforcement did not satisfy the strain stabilization. Load capacity also did not satisfy the condition of 1.1 times the nominal tensile strength of PS strands presented in ETAG 013. On the other hand, specimens that used three and four lateral reinforcements without spiral reinforcement satisfied the strain stabilization but did not satisfy 1.1 times the nominal tensile strength of PS strands. However, the secondary confinement effect could be confirmed from strain stabilization. In addition, the affection of HSC characteristics could be confirmed from a reinforcing level comparing other studies. The main confinement effect could be confirmed from the reinforcement strain results; there was a considerable difference between with and without spiral reinforcement at least 393 MPa. Comprehensively, main and secondary confinement effects are essential in post-tensioned anchorage zones. In addition, the performance of the anchorage zone could be increased by using HSC that the combination of high-strength and confinement effect.  相似文献   
52.
In order to improve flexural and impact performance, thin panels of steel fiber-reinforced ultra-high performance concrete (UHPC) were further reinforced with external layers of continuous fiber-reinforced thermoplastic (CFRTP) composites. CFRTP sheets were bonded to 305 × 305 × 12 mm UHPC panels using two different techniques. First, unidirectional E-glass fiber-reinforced tapes of polyethylene terephthalate glycol-modified (PETG) were arranged in layers and fused to the UHPC panels through thermoforming. Second, E-glass fiber woven fabrics were placed on the panel faces and bonded by vacuum infusion with a methyl methacrylate (MAA) polymer. Specimens were cut into four 150 mm square panels for quasi-static and low-velocity impact testing in which loads were applied at the panel centers. Under quasi-static loading, both types of thermoplastic composite reinforcements led to a 150–180% increase in both peak load capacity and toughness. Impact performance was measured in terms of both residual deformation and change in specimen compliance, and CFRTP additions were reduced both by 80% to 95%, indicating an increase in damage resistance. While both reinforcement fabrication techniques provided added performance, the thermoforming method was preferable due to its simplicity and fewer specialized tool requirements.  相似文献   
53.
Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.  相似文献   
54.
The use of adhesively bonded carbon fiber reinforced polymer (CFRP) materials to reinforce cracked steel elements has gained widespread acceptance in order to extend the lifespan of metallic structures. This allows an important reduction of the stress intensity factor (SIF) at the crack tip and thus a significant increase of the fatigue life. This paper deals with the assessment of the SIF for repaired cracked steel plates, using semi-empirical analysis and finite element analysis. Metallic plates with only one crack originating from a center hole were investigated. Virtual crack closure technique (VCCT) was used to define and evaluate the stress intensity factor at crack tip. The obtained modeling results are compared with experimental investigations led by the authors for different reinforcement configurations including symmetrical and non-symmetrical reinforcement, normal modulus and ultra-high-modulus CFRP plates, and pre-stressed CFRP plates. Results show that finite element model (FEM) analysis can obviously simulate the fatigue performance of the CFRP bonded steel plates with different reinforcement configurations. Moreover, a parametric analysis of the influence of the pre-stressing level was also conducted. The results show that an increase of the pre-stressing level results in an increase of the fatigue life of the element.  相似文献   
55.
Reduced maintenance costs of concrete structures can be ensured by efficient and comprehensive condition assessment. Ground-penetrating radar (GPR) has been widely used in the condition assessment of reinforced concrete structures and it provides completely non-destructive results in real-time. It is mainly used for locating reinforcement and determining concrete cover thickness. More recently, research has focused on the possibility of using GPR for reinforcement corrosion assessment. In this paper, an overview of the application of GPR in corrosion assessment of concrete is presented. A literature search and study selection methodology were used to identify the relevant studies. First, the laboratory studies are shown. After that, the studies for the application on real structures are presented. The results have shown that the laboratory studies have not fully illuminated the influence of the corrosion process on the GPR signal. Also, no clear relationship was reported between the results of the laboratory studies and the on-site inspection. Although the GPR has a long history in the condition assessment of structures, it needs more laboratory investigations to clarify the influence of the corrosion process on the GPR signal.  相似文献   
56.
Social interaction deficits in drug users likely impede treatment, increase the burden of the affected families, and consequently contribute to the high costs for society associated with addiction. Despite its significance, the neural basis of altered social interaction in drug users is currently unknown. Therefore, we investigated basal social gaze behavior in cocaine users by applying behavioral, psychophysiological, and functional brain-imaging methods. In study I, 80 regular cocaine users and 63 healthy controls completed an interactive paradigm in which the participants’ gaze was recorded by an eye-tracking device that controlled the gaze of an anthropomorphic virtual character. Valence ratings of different eye-contact conditions revealed that cocaine users show diminished emotional engagement in social interaction, which was also supported by reduced pupil responses. Study II investigated the neural underpinnings of changes in social reward processing observed in study I. Sixteen cocaine users and 16 controls completed a similar interaction paradigm as used in study I while undergoing functional magnetic resonance imaging. In response to social interaction, cocaine users displayed decreased activation of the medial orbitofrontal cortex, a key region of reward processing. Moreover, blunted activation of the medial orbitofrontal cortex was significantly correlated with a decreased social network size, reflecting problems in real-life social behavior because of reduced social reward. In conclusion, basic social interaction deficits in cocaine users as observed here may arise from altered social reward processing. Consequently, these results point to the importance of reinstatement of social reward in the treatment of stimulant addiction.Cocaine dependence is a chronically relapsing disorder defined by uncontrolled and compulsive drug use (1). Despite severe negative consequences including disrupted social relationships, loss of employment, and somatic and psychiatric illnesses, an addicted person’s life is often centered around the drug of choice and activities related to it (2). Therefore, drug use is classified as a major social, legal, and public health problem (3). After cannabis, cocaine is the second most prevalent illegal drug in the United States and Europe (4, 5), with a lifetime prevalence among young adults of 6.3% in Europe (15- to 34-y-olds) (4) and 13.3% in the United States (18- to 25-y-olds) (5).Social cognition and social support for drug users are of great clinical relevance, as they have been reported to influence onset of drug use and development of substance use disorders, and treatment success in patients with substance use disorders (6, 7). Impairments in social cognition may augment the risk of social isolation, aggression, and depression, likely supporting the vicious circle of drug use (8). Additionally, impaired social cognition may contribute to the decay of social relationships in addicted patients (9) with negative consequences for treatment success given that higher social support predicted longer abstinence duration (10). Furthermore, no efficient pharmacological treatment for cocaine addiction is currently available (11), and treatment approaches such as cognitive behavioral therapy rely, at least in part, on the emotional responsiveness and social abilities of drug users (12). Previous results suggest that cocaine users (CUs) show impairments in different facets of social cognition, particularly in emotional empathy, mental perspective taking, and emotion recognition in prosody, which are related to deficits in real-life social behavior such as fewer social contacts and more criminal offenses (13, 14). Furthermore, in money distribution games, CUs act more self-servingly and less altruistically than stimulant-naïve controls (15). Volkow et al. (9) postulated that neuroadaptations in the reward systems of drug users (e.g., ventral striatum and orbitofrontal cortex) alter reward processing such that the value of the abused drug is enhanced and concurrently the value of nondrug rewards, including social interaction, is reduced. Consequently, general social competence might become impaired and promote antisocial and criminal behavior. This may explain why social consequences of drug use (e.g., imprisonment or familial problems) do not prompt drug-addicted people to quit using the drug as well as how they contribute to increased drug use and transition from recreational drug use to addiction (9). However, whereas altered processing of monetary rewards has been reported in CUs (16), social reward processing has not been studied yet, neither on the psychological nor the neural level. Therefore, it remains elusive whether CUs (i) show behavioral differences to reward stemming from social interactions and, if so, (ii) which neural adaptations within reward circuitry underlie these potential changes in social interaction behavior.An essential part of social interaction is the phenomenon of “social gaze,” which has two aspects: Gaze can be used by the gazing person as a deictic cue to manipulate the attention of others, and can be read out by observers as a hint toward attentional focus of the gazing person (17). Both aspects can converge in joint attention (JA), which is a central element of social interaction (18) and is established when a person follows the direction of another person’s gaze so that both attend to the same object (19). Engagement in JA is considered to reflect our understanding of another person’s point of view (20). The capacity of JA emerges at 8–12 mo of age (21) and is predictive for later language learning (22) and the development of more advanced social skills such as mental perspective taking (e.g., the attribution of intentions and goals to others, also known as theory of mind) (23). Impaired JA is a core symptom of autism spectrum disorders (24).To test for social gaze differences between CUs and healthy controls (HCs), we applied a paradigm designed to capture the reciprocal and interactive nature of JA (25) (Fig. S1), where participants engage in an online interaction with an anthropomorphic virtual character in real time. Compared with self-initiated nonjoint attention (NJA; i.e., if the counterpart does not follow one’s gaze but rather pays attention to another object), self-initiated JA (i.e., if the counterpart follows one’s own gaze) is perceived as more pleasurable and associated with stronger activation of reward-related brain areas in healthy controls (25). This rewarding nature of JA might underlie the human motivation to engage in the sharing of experiences that emerges in early childhood (22, 25).It has been suggested that changes in social reward processing might underlie alterations in social behavior and cognition in CUs (9). Here we conducted two studies assessing JA processing, which constitutes an elegant approach to investigate basic social interaction patterns related to social reward processing (25), in CUs and stimulant-naïve HCs by means of behavioral, psychophysiological, and functional brain-imaging methods. In study I, a large sample of relatively pure CUs with few psychiatric comorbidities (n = 80) and stimulant-naïve HCs (n = 63) completed an interactive JA task (25) while valence and arousal ratings, error scores, reaction time, and pupil size were obtained. Pupil dilation provides an objective index of affective processing (26, 27). Based on the observations obtained in study I, we further investigated the neural correlates of the blunted emotional response to social gaze in subsamples of 16 CUs and 16 HCs using functional magnetic resonance imaging (fMRI) during an abridged version of the paradigm (study II). We hypothesized that altered emotional responses to JA are accompanied by less pronounced activation in reward-related brain areas of CUs.  相似文献   
57.
Although neural signals of reward anticipation have been studied extensively, the functional relationship between reward and attention has remained unclear: Neural signals implicated in reward processing could either reflect attentional biases towards motivationally salient stimuli, or proceed independently of attentional processes. Here, we sought to disentangle reward and attention‐related neural processes by independently modulating reward value and attentional task demands in a functional magnetic resonance imaging study in healthy human participants. During presentation of a visual reward cue that indicated whether monetary reward could be obtained in a subsequent reaction time task, participants either attended to the reward cue or performed an unrelated attention‐demanding task at two different levels of difficulty. In ventral striatum and ventral tegmental area, neural responses were modulated by reward anticipation irrespective of attentional demands, thus indicating attention‐independent processing of reward cues. By contrast, additive effects of reward and attention were observed in visual cortex. Critically, reward‐related activations in right anterior insula strongly depended on attention to the reward cue. Dynamic causal modelling revealed that the attentional modulation of reward processing in insular cortex was mediated by enhanced effective connectivity from ventral striatum to anterior insula. Our results provide evidence for distinct functional roles of the brain regions involved in the processing of reward‐indicating information: While subcortical structures signal the motivational salience of reward cues even when attention is fully engaged elsewhere, reward‐related responses in anterior insula depend on available attentional resources, likely reflecting the conscious evaluation of sensory information with respect to motivational value. Hum Brain Mapp 35:3036–3051, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
58.
Prenatal ethanol exposure modifies postnatal affinity to the drug, increasing the probability of ethanol use and abuse. The present study tested developing rats (5-day-old) in a novel operant technique to assess the degree of ethanol self-administration as a result of prenatal exposure to low ethanol doses during late gestation. On a single occasion during each of gestational days 17–20, pregnant rats were intragastrically administered ethanol 1 g/kg, or water (vehicle). On postnatal day 5, pups were tested on a novel operant conditioning procedure in which they learned to touch a sensor to obtain 0.1% saccharin, 3% ethanol, or 5% ethanol. Immediately after a 15-min training session, a 6-min extinction session was given in which operant behavior had no consequence. Pups were positioned on a smooth surface and had access to a touch-sensitive sensor. Physical contact with the sensor activated an infusion pump, which served to deliver an intraoral solution as reinforcement (Paired group). A Yoked control animal evaluated at the same time received the reinforcer when its corresponding Paired pup touched the sensor. Operant behavior to gain access to 3% ethanol was facilitated by prenatal exposure to ethanol during late gestation. In contrast, operant learning reflecting ethanol reinforcement did not occur in control animals prenatally exposed to water only. Similarly, saccharin reinforcement was not affected by prenatal ethanol exposure. These results suggest that in 5-day-old rats, prenatal exposure to a low ethanol dose facilitates operant learning reinforced by intraoral administration of a low-concentration ethanol solution. This emphasizes the importance of intrauterine experiences with ethanol in later susceptibility to drug reinforcement. The present operant conditioning technique represents an alternative tool to assess self-administration and seeking behavior during early stages of development.  相似文献   
59.
The saphenous vein is the conduit of choice in bypass graft procedures. Haemodynamic factors play a major role in the development of intimal hyperplasia (IH), and subsequent bypass failure. To evaluate the potential protective effect of external reinforcement on such a failure, we developed an ex vivo model for the perfusion of segments of human saphenous veins under arterial shear stress. In veins submitted to pulsatile high pressure (mean pressure at 100 mmHg) for 3 or 7 days, the use of an external macroporous polyester mesh 1) prevented the dilatation of the vessel, 2) decreased the development of IH, 3) reduced the apoptosis of smooth muscle cells, and the subsequent fibrosis of the media layer, 4) prevented the remodelling of extracellular matrix through the up-regulation of matrix metalloproteinases (MMP-2, MMP-9) and plasminogen activator type I. The data show that, in an experimental ex vivo setting, an external scaffold decreases IH and maintains the integrity of veins exposed to arterial pressure, via increase in shear stress and decrease wall tension, that likely contribute to trigger selective molecular and cellular changes.  相似文献   
60.
《Acta biomaterialia》2014,10(6):2602-2611
Hydrogels can provide a suitable environment for tissue formation by embedded cells, which makes them suitable for applications in regenerative medicine. However, hydrogels possess only limited mechanical strength, and must therefore be reinforced for applications in load-bearing conditions. In most approaches the reinforcing component and the hydrogel network have poor interactions and the synergetic effect of both materials on the mechanical properties is not effective. Therefore, in the present study, a thermoplastic polymer blend of poly(hydroxymethylglycolide-co-ε-caprolactone)/poly(ε-caprolactone) (pHMGCL/PCL) was functionalized with methacrylate groups (pMHMGCL/PCL) and covalently grafted to gelatin methacrylamide (gelMA) hydrogel through photopolymerization. The grafting resulted in an at least fivefold increase in interface-binding strength between the hydrogel and the thermoplastic polymer material. GelMA constructs were reinforced with three-dimensionally printed pHMGCL/PCL and pMHMGCL/PCL scaffolds and tested in a model for a focal articular cartilage defect. In this model, covalent bonds at the interface of the two materials resulted in constructs with an improved resistance to repeated axial and rotational forces. Moreover, chondrocytes embedded within the constructs were able to form cartilage-specific matrix both in vitro and in vivo. Thus, by grafting the interface of different materials, stronger hybrid cartilage constructs can be engineered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号