首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   888篇
  免费   55篇
  国内免费   20篇
耳鼻咽喉   2篇
儿科学   3篇
妇产科学   1篇
基础医学   194篇
口腔科学   1篇
临床医学   25篇
内科学   96篇
皮肤病学   4篇
神经病学   264篇
特种医学   6篇
外科学   16篇
综合类   52篇
预防医学   16篇
眼科学   3篇
药学   174篇
中国医学   60篇
肿瘤学   46篇
  2024年   1篇
  2023年   12篇
  2022年   12篇
  2021年   26篇
  2020年   16篇
  2019年   30篇
  2018年   16篇
  2017年   20篇
  2016年   21篇
  2015年   30篇
  2014年   82篇
  2013年   67篇
  2012年   68篇
  2011年   78篇
  2010年   61篇
  2009年   58篇
  2008年   69篇
  2007年   60篇
  2006年   51篇
  2005年   27篇
  2004年   43篇
  2003年   33篇
  2002年   23篇
  2001年   14篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有963条查询结果,搜索用时 156 毫秒
41.
42.
43.
The subventricular zone (SVZ) is a major neurogenic region in the adult brain. Cells from the SVZ give rise to two populations of olfactory bulb interneurons: the granule cells and periglomerular (PG) cells. Currently, little is known about the signaling pathways that direct these newly generated neurons to become either granule or PG neurons. In the present study, we used the nestin promoter and enhancer to direct expression of the tetracycline transactivator (tTA). We generated two independent strains of nestin-tTA transgenic animals and crossed founder mice from both lines to mice containing a tetracycline-regulated transgene (mCREB) whose expression served as a marker for the activity of the nestin-tTA transgene. mCREB expression occurred in a subset of proliferating cells in the SVZ and rostral migratory stream in both lines. Surprisingly, in both lines of nestin-tTA mice transgene expression in the olfactory bulb was limited to PG neurons and was absent from granule cells, suggesting that this nestin promoter construct differentiates between the two interneuronal populations. Transgene expression occurred in several subtypes of PG neurons, including those expressing calretinin, calbindin, GAD67, and tyrosine hydroxylase. These results suggest that a unique subset of SVZ precursor cells gives rise to PG, and not granule cells. The ability to express different transgenes within this subpopulation of neuronal precursors provides a powerful system to define the signals regulating the differentiation and survival of adult-generated neurons in the olfactory bulb.  相似文献   
44.
45.
46.
47.
Although it is widely known that steroid hormones differentiate the brain, little is known about the signal transduction pathways that are influenced by steroid hormones during development. This review focuses on divergence in the phosphorylation of cAMP response element binding protein (CREB) in the developing male and female rat brain. At birth, males have an increased phosphorylation of CREB compared to females. As CREB mediates changes in cellular morphology, function and survival rates, its activation may underlie an important event in steroid-mediated sexual differentiation of the brain. The importance of CREB is further supported by a sex difference in the expression of the nuclear receptor coactivator, CREB-binding protein, a critical factor involved in the genomic actions of CREB. This suggests that the developing male brain may be in a hyper-responsive state to factors that lead to increased phosphorylation of CREB, resulting in divergent responses in males versus females. An example of this divergence is the response to GABA. In the male rat brain, GABA action leads to increased phosphorylation of CREB; whereas GABA action in the female brain leads to decreased phosphorylation of CREB. The potential consequences of this divergence in the regulation of CREB are discussed in relation to adult sexually dimorphic brain morphology, physiology and behaviour.  相似文献   
48.
49.
The effects of lead on the signal transduction pathways that may be involved in the release of gonadotropin-releasing hormone (GnRH) from neurons in the hypothalamus have not been well defined. Using the GT1-7 cell line, an in vitro model for GnRH-secreting neurons, we examined signal transduction pathways directly affected by lead. We found that lead-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK2), as well as p90RSK and cAMP response element-binding protein (CREB), but did not induce IkappaB degradation. MEK1/2 inhibitor (PD98059) suppressed lead-induced ERK and p90RSK activation. Neither PKC inhibitors (Go6983, Go6976) nor CaMKII inhibitor (KN-62) had a pronounced effect on lead-induced ERK1 and ERK2 phosphorylation. However, MEK1/2 inhibitor, CaMKII inhibitor, and PKC inhibitor significantly suppressed lead-induced CREB phosphorylation. These results indicate that lead-activated PKC, CaMKII and MEK/ERK/p90RSK pathways simultaneously, all of which contributed to CREB phosphorylation. Our results also indicate that lead-induced p90RSK and CREB activation does not alter expression of early response genes like c-fos. We conclude that lead activates PKC, CaMKII or MEK-ERK-p90RSK pathways in GT1-7 cells, leading to CREB phosphorylation and modulation of gene expression.  相似文献   
50.
An increasing body of evidence suggests that genetic factors play a role in alcohol drinking behaviors. C57BL/6J (C57) mice innately consume larger amounts of alcohol compared to that consumed by DBA/2J (DBA) mice. Furthermore, alterations in cAMP-responsive element binding (CREB) protein function in the brain have been implicated in alcohol drinking behaviors. The present investigation examined innate expression and phosphorylation of CREB in various brain structures of C57 and DBA mice. It was found that CREB expression and phosphorylation was lower, specifically in the shell structure of the nucleus accumbens, in C57 mice compared to that in DBA mice. CREB expression and phosphorylation were similar in other brain regions such as the nucleus accumbens core and the cortical, amygdaloid, hippocampal, and striatal structures of C57 and DBA mice. The expression of a cAMP-inducible gene, neuropeptide Y (NPY), was also investigated in the nucleus accumbens region of C57 and DBA mice. It was found that in C57 mice, NPY protein levels were lower in the shell but not in the core structure of the nucleus accumbens compared to that in DBA mice. It was also found that C57 mice are not innately anxious, but they consume larger amounts of alcohol than do DBA mice. Because the shell structure of the nucleus accumbens has been implicated in reward mechanisms of alcohol, it is possible that lower CREB function in this brain structure may be in part associated with the excessive alcohol drinking behavior of C57 mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号