首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101613篇
  免费   10378篇
  国内免费   5978篇
耳鼻咽喉   782篇
儿科学   885篇
妇产科学   1362篇
基础医学   28606篇
口腔科学   3195篇
临床医学   6637篇
内科学   13701篇
皮肤病学   1946篇
神经病学   7805篇
特种医学   1955篇
外国民族医学   23篇
外科学   8326篇
综合类   15363篇
现状与发展   21篇
一般理论   2篇
预防医学   2702篇
眼科学   2765篇
药学   10195篇
  14篇
中国医学   3151篇
肿瘤学   8533篇
  2024年   101篇
  2023年   1084篇
  2022年   1556篇
  2021年   3076篇
  2020年   3004篇
  2019年   2652篇
  2018年   2770篇
  2017年   3277篇
  2016年   3786篇
  2015年   4256篇
  2014年   6472篇
  2013年   8083篇
  2012年   6257篇
  2011年   7271篇
  2010年   5895篇
  2009年   5653篇
  2008年   5939篇
  2007年   5902篇
  2006年   5435篇
  2005年   4662篇
  2004年   3933篇
  2003年   3215篇
  2002年   2432篇
  2001年   2068篇
  2000年   1784篇
  1999年   1543篇
  1998年   1453篇
  1997年   1357篇
  1996年   1227篇
  1995年   1281篇
  1994年   1140篇
  1993年   998篇
  1992年   817篇
  1991年   779篇
  1990年   661篇
  1989年   659篇
  1988年   553篇
  1987年   512篇
  1986年   440篇
  1985年   673篇
  1984年   597篇
  1983年   422篇
  1982年   525篇
  1981年   399篇
  1980年   339篇
  1979年   299篇
  1978年   205篇
  1977年   156篇
  1976年   144篇
  1975年   54篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
31.
A pathological feature in atherosclerosis is the dysfunction and death of vascular endothelial cells (EC). Oxidized low‐density lipoprotein (LDL), known to accumulate in the atherosclerotic arterial walls, impairs endothelium‐dependent relaxation and causes EC apoptosis. A major bioactive ingredient of the oxidized LDL is lysophosphatidylcholine (LPC), which at higher concentrations causes apoptosis and necrosis in various EC. There is hitherto no report on LPC‐induced cytotoxicity in brain EC. In this work, we found that LPC caused cytosolic Ca2+ overload, mitochondrial membrane potential decrease, p38 activation, caspase 3 activation and eventually apoptotic death in mouse cerebral bEND.3 EC. In contrast to reported reactive oxygen species (ROS) generation by LPC in other EC, LPC did not trigger ROS formation in bEND.3 cells. Pharmacological inhibition of p38 alleviated LPC‐inflicted cell death. We examined whether heparin could be cytoprotective: although it could not suppress LPC‐triggered Ca2+ signal, p38 activation and mitochondrial membrane potential drop, it did suppress LPC‐induced caspase 3 activation and alleviate LPC‐inflicted cytotoxicity. Our data suggest LPC apoptotic death mechanisms in bEND.3 might involve mitochondrial membrane potential decrease and p38 activation. Heparin is protective against LPC cytotoxicity and might intervene steps between mitochondrial membrane potential drop/p38 activation and caspase 3 activation.  相似文献   
32.
《Vaccine》2021,39(45):6601-6613
AKS-452 is a biologically-engineered vaccine comprising an Fc fusion protein of the SARS-CoV-2 viral spike protein receptor binding domain antigen (Ag) and human IgG1 Fc (SP/RBD-Fc) in clinical development for the induction and augmentation of neutralizing IgG titers against SARS-CoV-2 viral infection to address the COVID-19 pandemic. The Fc moiety is designed to enhance immunogenicity by increasing uptake via Fc-receptors (FcγR) on Ag-presenting cells (APCs) and prolonging exposure due to neonatal Fc receptor (FcRn) recycling. AKS-452 induced approximately 20-fold greater neutralizing IgG titers in mice relative to those induced by SP/RBD without the Fc moiety and induced comparable long-term neutralizing titers with a single dose vs. two doses. To further enhance immunogenicity, AKS-452 was evaluated in formulations containing a panel of adjuvants in which the water-in-oil adjuvant, Montanide™ ISA 720, enhanced neutralizing IgG titers by approximately 7-fold after one and two doses in mice, including the neutralization of live SARS-CoV-2 virus infection of VERO-E6 cells. Furthermore, ISA 720-adjuvanted AKS-452 was immunogenic in rabbits and non-human primates (NHPs) and protected from infection and clinical symptoms with live SARS-CoV-2 virus in NHPs (USA-WA1/2020 viral strain) and the K18 human ACE2-trangenic (K18-huACE2-Tg) mouse (South African B.1.351 viral variant). These preclinical studies support the initiation of Phase I clinical studies with adjuvanted AKS-452 with the expectation that this room-temperature stable, Fc-fusion subunit vaccine can be rapidly and inexpensively manufactured to provide billions of doses per year especially in regions where the cold-chain is difficult to maintain.  相似文献   
33.
34.
《Vaccine》2019,37(47):6987-6995
Vero cells are nowadays widely used in the production of human vaccines. They are considered as one of the most productive and flexible continuous cell lines available for vaccine manufacturing. However, these cells are anchorage dependent, which greatly complicates upstream processing and process scale-up. Moreover, there is a recognized need to reduce the costs of vaccine manufacturing to develop vaccines that are affordable worldwide. The use of cell lines adapted to suspension growth contributes to reach this objective.The current work describes the adaptation of Vero cells to suspension culture in different serum free media according to multiple protocols based on subsequent passages. The best one that relies on cell adaption to IPT-AFM an in-house developed animal component free medium was then chosen for further studies. Besides, as aggregates have been observed, the improvement of IPT-AFM composition and mechanical dissociation were also investigated.In addition to IPT-AFM, three chemically defined media (CD293, Hycell CHO and CD-U5) and two serum free media (293SFMII and SFM4CHO) were tested to set up a serum free culture of the suspension-adapted Vero cells (VeroS) in shake flasks. Cell density levels higher than 2 × 106 cells/mL were obtained in the assessed conditions. The results were comparable to those obtained in spinner culture of adherent Vero cells grown on Cytodex 1 microcarriers.Cell infection with LP-2061 rabies virus strain at an MOI (Multiplicity of Infection) of 0.1 and a cell density of 8 ± 0.5 × 105 cells/mL resulted in a virus titer higher than 107 FFU/mL in all media tested. Nevertheless, the highest titer equal to 5.2 ± 0.5 × 107 FFU/mL, was achieved in IPT-AFM containing a reduced amount of Ca++ and Mg++. Our results demonstrate the suitability of the obtained VeroS cells to produce rabies virus at a high titer, and pave the way to develop VeroS cells bioreactor process for rabies vaccine production.  相似文献   
35.
36.
37.
Cadmium is a toxic metal that can damage the brain and other organs. This study aimed to explore the protective effects of Potentilla anserine L. polysaccharide (PAP) against CdCl2-induced neurotoxicity in N2a and SH-SY5Y cells and in the cerebral cortex of BALB/c mice. In addition, we aimed to identify the potential mechanisms underlying these protective effects. Relative to CdCl2 treatment alone, pretreatment with PAP prevented the reduction in cell viability evoked by CdCl2, decreased rates of apoptosis, promoted calcium homeostasis, decreased ROS accumulation, increased mitochondrial membrane potential, inhibited cytochrome C and AIF release, and prevented the cleavage of caspase-3 and PARP. In addition, PAP significantly decreased the CdCl2-induced phosphorylation of CaMKII, Akt, and mTOR. In conclusion, PAP represents a potential therapeutic agent for the treatment of Cd-induced neurotoxicity, functioning in part via attenuating the activation of the mitochondrial apoptosis pathway and the Ca2+-CaMKII-dependent Akt/mTOR pathway.  相似文献   
38.
The current literature suggests that the antibacterial effect of leukocyte- and platelet-rich plasma (L-PRP) is directly related to platelet and leukocyte concentrations. The aim of this study was twofold: first, to evaluate the antimicrobial effect of L-PRP against selected bacterial strains in vitro, and second, to correlate this effect with leukocyte and platelet content in the final concentration. Blood was collected from 20 healthy males, and L-PRP, acellular plasma (AP), and autologous thrombin were consecutively prepared. Flow cytometry analysis of the blood, L-PRP, and AP was performed. The L-PRP gel, liquid L-PRP, and thrombin samples were tested in vitro for their antibacterial properties against seven selected bacterial strains using the Kirby–Bauer disk-diffusion method. There was notable antimicrobial activity against selected bacterial strains. No statistically significant correlations between antimicrobial activities and the platelet concentration in L-PRP were observed. Statistically significant positive correlations between selected leukocyte subtypes and antimicrobial activity were noted. A negative correlation was found between elevated monocyte count and antimicrobial activity of L-PRP against one bacterial strain studied. L-PRP possesses antimicrobial activity and can be potentially useful in the fight against certain postoperative infections. The bactericidal effect of L-PRP is caused by leukocytes, and there exists a relationship among selected leukocyte subtypes and L-PRP antimicrobial activity.  相似文献   
39.
Hepatitis E virus (HEV) is the most common cause of acute liver failure (LF) and one of the most common factors causing acute injury in acute-on-chronic LF (ACLF). When HEV-related LF occurs, a series of changes take place in both the intrahepatic environment and extrahepatic microenvironment. The changed types and distribution of immune cells (infiltrating macrophages and increased lymphocytes) in liver tissue, as well the increased proinflammatory cytokines and chemokines in the blood, indicate that the occurrence and progression of HEV-related LF are closely related to immune imbalance. The clinical features and immune reaction in the body during HEV-related acute LF (ALF) and ACLF are complicated. This review highlights recent progress in elucidating the clinical manifestations of HEV-associated ALF and ACLF and discusses the corresponding systemic immune changes and possible regulatory mechanisms.  相似文献   
40.
Most vaccines approved by regulatory bodies are administered via intramuscular or subcutaneous injections and have shortcomings, such as the risk of needle-associated blood infections, pain and swelling at the injection site. Orally administered vaccines are of interest, as they elicit both systemic and mucosal immunities, in which mucosal immunity would neutralize the mucosa invading pathogen before the onset of an infection. Hence, oral vaccination can eliminate the injection associated adverse effects and enhance the person's compliance. Conventional approaches to manufacturing oral vaccines, such as coacervation, spray drying, and membrane emulsification, tend to alter the structural proteins in vaccines that result from high temperature, organic and toxic solvents during production. Electrohydrodynamic processes, specifically electrospraying, could solve these challenges, as it also modulates antigen release and has a high loading efficiency. This review will highlight the mucosal immunity and biological basis of the gastrointestinal immune system, different oral vaccine delivery approaches, and the application of electrospraying in vaccines development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号