首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5027篇
  免费   286篇
  国内免费   169篇
耳鼻咽喉   10篇
儿科学   27篇
妇产科学   8篇
基础医学   759篇
口腔科学   13篇
临床医学   160篇
内科学   261篇
皮肤病学   7篇
神经病学   2489篇
特种医学   87篇
外科学   81篇
综合类   341篇
预防医学   78篇
眼科学   78篇
药学   957篇
中国医学   102篇
肿瘤学   24篇
  2024年   3篇
  2023年   26篇
  2022年   19篇
  2021年   70篇
  2020年   50篇
  2019年   85篇
  2018年   66篇
  2017年   91篇
  2016年   94篇
  2015年   123篇
  2014年   158篇
  2013年   263篇
  2012年   253篇
  2011年   303篇
  2010年   286篇
  2009年   317篇
  2008年   296篇
  2007年   270篇
  2006年   250篇
  2005年   214篇
  2004年   201篇
  2003年   218篇
  2002年   210篇
  2001年   158篇
  2000年   125篇
  1999年   126篇
  1998年   168篇
  1997年   150篇
  1996年   116篇
  1995年   81篇
  1994年   66篇
  1993年   63篇
  1992年   58篇
  1991年   35篇
  1990年   39篇
  1989年   27篇
  1988年   21篇
  1987年   12篇
  1986年   40篇
  1985年   70篇
  1984年   50篇
  1983年   52篇
  1982年   54篇
  1981年   41篇
  1980年   27篇
  1979年   11篇
  1978年   11篇
  1977年   6篇
  1975年   3篇
  1973年   2篇
排序方式: 共有5482条查询结果,搜索用时 31 毫秒
71.
Ciliary neurotrophic factor (CNTF) has a protective effect on the striatum in animal models of Huntington's disease. However, the mechanism through which it exerts its effect is not clear. In this study, we show that there is a concentration-dependent direct protective effect of CNTF against N-methyl-D-aspartate-mediated excitotoxicity on striatal neurons in vitro. The CNTF has to be added more than half an hour before the insult for the effect to occur and its effect is eliminated by the presence of the protein synthesis inhibitor cycloheximide. This suggests that the protective mechanism of CNTF does not involve acute interference with the glutamate receptors, but probably requires gene/protein expression. We have also shown that the effect of CNTF against glutamate-induced excitotoxicity is dependent on the concentration of glutamate with a protective effect more evident at a low grade excitotoxic insult. Finally, we saw no effect of CNTF on calcium ionophore A23187-induced toxicity in striatal cultures, indicating that the growth factor does not promote survival by enhancing general defenses against raised intracellular levels of calcium.  相似文献   
72.
Summary. Defects in mitochondrial enzymes have been found not only in substantia nigra, but also in platelets from Parkinson's Disease (PD) patients, suggesting a systemic impairment of energy metabolism. Since platelets present an energy-dependent glutamate uptake similar to that described in central nervous system, glutamate uptake was determined in platelets from 34 PD patients and 21 age-related normal controls, as Na+-dependent [3H]glutamate influx; glutamate level was also analyzed by reverse-phase HPLC. A 50% reduction of glutamate uptake (p < 0.001) was observed in idiopathic PD patients, respect to controls and secondary parkinsonian syndromes. The decrease correlated with the severity of PD, measured by the UPDRS (r = −0.54; P < 0.05). Glutamate level was increased in platelets of PD patients, but was not correlated to the uptake decrease. Both phoenomena may be explained by the modifications of mitochondrial enzymes described in platelets, which could be used as a peripheral model of glutamatergic function in PD. Received October 7, 1998; accepted January 7, 1999  相似文献   
73.
Metabotropic glutamate (mGlu) receptors have been implicated in a number of physiological and pathological responses to glutamate, but the exact role of group I mGlu receptors in causing postischaemic injury is not yet clear. In this study, we examined whether the recently-characterized and relatively selective mGlu1 receptor antagonists 1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) could reduce neuronal death in vitro, following oxygen-glucose deprivation (OGD) in murine cortical cell and rat organotypic hippocampal cultures, and in vivo, after global ischaemia in gerbils. When present in the incubation medium during the OGD insult and the subsequent 24 h recovery period, AIDA and CBPG significantly reduced neuronal death in vitro. The extent of protection was similar to that observed with the nonselective mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine [(+)MCPG] and with typical ionotropic glutamate (iGlu) receptor antagonists. Neuroprotection was also observed when AIDA or CBPG were added only after the OGD insult was terminated. Neuronal injury was not attenuated by the inactive isomer (-)MCPG, but was significantly enhanced by the nonselective mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid [(1S,3R)-ACPD] and the group I mGlu receptor agonist 3,5-dihydroxyphenylglycine (3,5-DHPG). The antagonists (+)MCPG, AIDA and CBPG were also neuroprotective in vivo, because i. c.v. administration reduced CA1 pyramidal cell degeneration examined 7 days following transient carotid occlusion in gerbils. Our results point to a role of mGlu1 receptors in the pathological mechanisms responsible for postischaemic neuronal death and propose a new target for neuroprotection.  相似文献   
74.
We investigated the modulation by growth factors of phospholipase C (PLC)-linked glutamate receptors during in vitro development of hippocampal cultures. In defined medium, glial cells represent between 3 and 14% of total cell number. When we added basic fibroblast growth factor (bFGF) 2 h after plating, we found: (i) a neuroprotection from naturally occurring death for up to 5 days; (ii) a proliferation of glial cells from day 3; and (iii) a potentiation of quisqualate (QA)-induced inositol phosphate (IP) formation from 1 to 10 days in vitro (DIV) and 1S, 3R-amino-cyclopentane-1,3-dicarboxylate (ACPD) response from 3 to 10 DIV. The antimitotic cytosine-beta,D-arabinofuranoside (AraC) blocked glial cell proliferation induced by bFGF, but not neuroprotection. Under these conditions, the early potentiation of the QA response (1-3 DIV) was not changed, while the ACPD and late QA response potentiations were prevented (5-10 DIV). Epidermal growth factor was not neuroprotective but it induced both glial cell proliferation and late QA or ACPD potentiation. Surprisingly, the early bFGF-potentiated QA-induced IP response was blocked by 6, 7-dinitro-quinoxaline-2,3-dione (DNQX), suggesting the participation of ionotropic (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (KA) receptors. The delayed bFGF-potentiated ACPD-induced IP response is inhibited by (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), indicating possible activation of glial metabotropic receptors. These results suggest that, in hippocampal cultures, bFGF modulates AMPA and metabotropic glutamate receptors linked to the IP cascade, possibly in relation to the regulation of neuronal survival and glial cell proliferation, respectively.  相似文献   
75.
Lamotrigine, carbamazepine and oxcarbazepine inhibit veratrine-induced neurotransmitter release from rat brain slices in concentrations corresponding to those reached in plasma or brain in experimental animals or humans after anticonvulsant doses, presumably due to their sodium channel blocking properties. Microdialysis measurements of extracellular glutamate and aspartate were carried out in conscious rats in order to investigate whether corresponding effects occur in vivo. Veratridine (10 M) was applied via the perfusion medium to the cortex and the corpus striatum in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (1 mM in perfusion medium). Maximally effective anticonvulsant doses of carbamazepine (30 mg/kg), oxycarbazepine ( 60 mg/kg) and lamotrigine (15 mg/kg) were given orally.The uptake inhibitor increased extracellular glutamate and aspartate about 2-fold in striatum and about 7-fold and 3-fold, respectively, in cortex. Veratridine caused a further 2–3-fold increase in extracellular glutamate in striatum and cortex, respectively, but its effect on extracellular aspartate was less marked in both areas. None of the anticonvulsant compounds affected the veratridine-induced increases in extracellular glutamate or aspartate in the striatum which were, however, markedly inhibited by tetrodotoxin (1 M) and thus are sensitive to sodium channel blockade. In the cortex, the same drugs at the same doses did cause about 50% inhibition of the veratridine-induced increase in extracellular glutamate. Carbamazepine and to a lesser extent lamotrigine, but not oxcarbazepine, also inhibited the veratridine-induced increase in extracellular aspartate in the cortex.Although our results might seem to support the view that inhibition of glutamate and aspartate release is responsible for the anticonvulsant effects of lamotrigine, carbamazepine and oxcarbazepine, two complementary findings argue against this interpretation. First, as previously shown, inhibition of electrically induced release of glutamate requires 5 to 7 times higher concentrations of these compounds than release elicited by veratrine. Second, the present study indicates that doses totally suppressing convulsions caused no inhibition in the striatum and at best a 50% inhibition in the brain cortex. From this we conclude that the doses used here, although to some extent effective against veratridine, did not suppress the release of GLU and ASP elicited by the normal ongoing electrical activity of the glutamatergic and aspartatergic neurons and that the mechanism of the suppression of convulsions must be sought elsewhere.  相似文献   
76.
Conditions causing a reduction of oxygen availability (anoxia), such as stroke or diabetes, result in drastic changes in ion movements, levels of neurotransmitters and metabolites and subsequent neural death. Currently, there is no clinically available treatment for anoxia induced neural cell death resulting in drastic and permanent central nervous system dysfunction. However, there have been some exciting developments in experimentally induced anoxic conditions where several classes of drugs appear to significantly reduce neural cell death. This report aims to provide the foundations for understanding both the basic mechanisms involved in retinal ischaemic damage and experimental treatments used to prevent such damage. We discuss the normal release, actions and uptake of the fast retinal neurotransmitters, glutamate and GABA, in the vertebrate retina. Immunocytochemistry is used to demonstrate that both glutamate and GABA are found in the macaque retina. Following this is a discussion on how ischaemia may enhance neurotransmitter release or disrupt its uptake, thus causing an increase in extracellular concentration of these neurotransmitters and subsequent neuronal damage. The mechanisms involved in glutamate neurotoxicity are reviewed, because excess glutamate is the likely cause of retinal ischaemic damage. Finally, the mechanisms behind four possible modes of treatment of neurotransmitter toxicity and their advantages and disadvantages are discussed. Hopefully, further research in this area will lead to the development of a rational therapy for retinal, as well as cerebral ischaemia.Abbreviations -KG -ketoglutarate - AAT aspartate amino transferase - AC amacrine cell - ACL amacrine cell layer - BC bipolar cell - CNS central nervous system - EAA excitatory amino acids - G'ase glutaminase - GABA -amino butyric acid - GABA-T GABA transaminase - GAD glumatic acid decarboxylase - GC ganglion cell - GCL ganglion cell layer - GDH glutamate dehydrogenase - gj gap junction - GS glutamine synthetase - HC horizontal cell - ILM inner limiting membrane - INL inner nuclear layer - IPC inter-plexiform cell - IPL inner plexiform layer - IS inner segment of photoreceptor - NFL nerve fibre layer - NMDA N-methyl-D-aspartate - OLM outer limiting membrane - ONL outer nuclear layer - OPL outer plexiform layer - OS outer segment of photoreceptor - Ox acetateoxaloacetate - RL receptor layer - SSAD succinate semi-aldehyde decarboxylase - Succinate SA succinate semi aldehyde - TCA cycle tricarboxylic acid cycle  相似文献   
77.
One of the links in the trisynaptic circuit of the hippocampus is the synapse between the mossy fibre terminals of dentate granule cells and CA3 pyramidal cells of Ammon's horn. This synapse has been physiologically characterized as excitatory, and there is pharmacological and immunohistochemical evidence that mossy fibre terminals utilize glutamate as a neurotransmitter. This study demonstrates the presence of GABA-immunoreactivity in mossy fibre axons and terminals of the monkey at the electron microscopic level. We combined Golgi impregnation to identify CA3 pyramidal neurones, with postembedding immunocytochemistry to characterize the inputs to the identified cells. GABA immunoreactivity was present in mossy fibre terminals that made synaptic contact with complex embedded spines of identified Golgi-impregnated CA3 pyramidal neurones. GABA immunoreactivity could be demonstrated in serial sections of the same mossy fibre terminals by using 3 different antisera raised against GABA. In serial sections, the mossy fibre terminals were shown to be immunoreactive for both glutamate and GABA. In contrast, glutamate immunoreactivity but not GABA immunoreactivity was found in other terminals that did not have the morphological characteristics of mossy fibre terminals. GABA immunoreactivity in mossy fibre terminals was also demonstrated in a human surgical specimen of hippocampus. The coexistence of an "excitatory" amino acid and of an "inhibitory" amino acid in the same "excitatory" nerve terminal raises the possibility of corelease of the two transmitters, suggesting that the control of hippocampal neural activity is more complex than hitherto suspected.  相似文献   
78.
We studied the activation of low-threshold calcium spikes (LTS) by excitatory postsynaptic potentials in pyramidal neurons from guinea pig medial frontal cortex with intracellular recording. We used extracellular bicuculline and phaclofen and intracellular QX-314 to block inhibitory synaptic potentials and sodium currents. Postsynaptic potentials were evoked by stimulation of layer I. We found that large (> 10-15 mV) excitatory synaptic potentials evoked from membrane potentials more negative than -75 mV were able to trigger LTS. The activation of LTS resulted in an increase of the rising slope or amplitude of the synaptic potentials depending on the size of the excitatory postsynaptic potential (EPSP). We used 100 microM NiCl2 to confirm the presence of LTS as part of the EPSPs. The N-methyl-D-aspartate (NMDA) and non-NMDA components of the excitatory synaptic potentials were isolated using (+/-)2-amino-5-phosphonovaleric acid (APV; 50 microM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM); both components could, independently, trigger an LTS. With recordings made with K+ acetate-filled electrodes, we show that the activation of LTS was critical to allow excitatory synaptic potentials to reach the threshold of action potential firing; also, this amplification of synaptic responses produced the firing of more than a single action potential by the postsynaptic cell. These results demonstrate that in cortical pyramidal neurons the activation of low-threshold calcium spikes results in the amplification of synaptic responses.  相似文献   
79.
We investigated the effect of 10 months ovariectomy and a correction therapy, 2 weeks before the rats were killed, of oestradiol, progesterone or their combination on NMDA and AMPA receptor binding in the hippocampus, dentate gyrus, striatum, nucleus accumbens and frontal cortex of the rat brain as well as on amino acid levels in frontal cortex. NMDA and AMPA binding densities were assayed by autoradiography using, respectively, L-[3H]glutamate and [3H]AMPA; amino acid concentrations were measured by high performance liquid chromatograhy (HPLC) coupled with UV detection. Ovariectomy was without effect on NMDA and AMPA binding density in all brain regions assayed except in the hippocampal CA1 region and dentate gyrus where it decreased NMDA binding density compared to intact rats values. Oestradiol restored and increased NMDA binding density in the CA1 subfield and the dentate gyrus of ovariectomized rats but, by contrast, it decreased binding density in the striatum and in the frontal cortex while having no effect in the CA2/3 subfield of the hippocampus and in the nucleus accumbens. Oestradiol was without effect on AMPA binding density in the hippocampus and the dentate gyrus but it reduced AMPA binding density in the striatum, the frontal cortex and the nucleus accumbens. Progesterone, and oestradiol combined with progesterone, decreased NMDA but not AMPA binding density in the frontal cortex of ovariectomized rats, and they were without effect on these receptors in the other brain regions assayed. Amino acid concentrations in the frontal cortex were unchanged after ovariectomy or steroid treatments. The effect of oestradiol in the hippocampus confirmed in the present study and our novel findings in the frontal cortex, striatum and nucleus accumbens may have functional significance for schizophrenia and neurodegenerative diseases.  相似文献   
80.
We examined the generation, propagation and pharmacology of 4-aminopyridine (4-AP)-induced epileptiform activity (EA) in the intact interconnected limbic structure of the newborn (P0-7) rat in vitro. Whole-cell recordings of CA3 pyramidal cells and multisite field potential recordings in CA3, CA1, dentate gyrus, and lateral and medial entorhinal cortex revealed 4-AP-induced EA as early as P0-1. At this age, EA was initiated in the CA3 region and propagated to CA1, but not to the entorhinal cortex. Starting from P3-4, EA propagated from CA3 to the entorhinal cortex. Along the CA3 septo-temporal axis, EA arose predominantly from the septal pole and spread towards the temporal site. Whereas the onset of 4-AP-induced EA decreased with age from 21.2 +/- 1.6 min at P0-1 to 4.7 +/- 0.63 min at P6-7, the seizure duration increased in the same age groups from 98 +/- 14 s to 269.4 +/- 85.9 s, respectively. The EA was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) but not by DL-2-amino-5-phosphonovaleric acid (APV), (+)-MK-801 hydrogen maleate (MK-801) or (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG), suggesting that they were mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptor activation. We conclude that: (i) the septal pole of the hippocampal CA3 region plays a central role in the generation of EA in the neonatal limbic system; and (ii) AMPA/kainate receptor-mediated EA can be generated in CA3 already at birth. Therefore, the recurrent collateral synapses and circuits required for the generation of EA are developed earlier than previously suggested on the basis of studies on hippocampal slices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号