首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   8篇
  国内免费   2篇
妇产科学   1篇
基础医学   20篇
口腔科学   3篇
临床医学   8篇
内科学   45篇
神经病学   12篇
特种医学   1篇
外科学   2篇
综合类   2篇
药学   45篇
中国医学   1篇
肿瘤学   9篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2016年   2篇
  2015年   10篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   11篇
  2010年   16篇
  2009年   11篇
  2008年   10篇
  2007年   4篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1979年   1篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
91.
Nerve growth factor (NGF) binds to TrkA receptor and triggers activation of numerous signaling cascades, which play critical roles in neuronal plasticity, survival, and neurite outgrowth. To mimic NGF functions pharmacologically, we developed a high-throughput screening assay to identify small-molecule agonists for TrkA receptor. The most potent compound, gambogic amide, selectively binds to TrkA, but not TrkB or TrkC, and robustly induces its tyrosine phosphorylation and downstream signaling activation, including Akt and MAPKs. Further, it strongly prevents glutamate-induced neuronal cell death and provokes prominent neurite outgrowth in PC12 cells. Gambogic amide specifically interacts with the cytoplasmic juxtamembrane domain of TrkA receptor and triggers its dimerization. Administration of this molecule in mice substantially diminishes kainic acid-triggered neuronal cell death and decreases infarct volume in the transient middle cerebral artery occlusion model of stroke. Thus, gambogic amide might not only establish a powerful platform for dissection of the physiological roles of NGF and TrkA receptor but also provide effective treatments for neurodegenerative diseases and stroke.  相似文献   
92.
93.
94.
95.
目的:构建含TFDP3基因启动子和荧光素酶报告基因的重组载体pGL3-TFDP3-promoter,观察E2F1对TFDP3转录及表达的调控作用以及TFDP3对E2F1诱导肿瘤细胞凋亡的影响。方法:以人前列腺癌PC3细胞系基因组DNA为模板,PCR扩增TFDP3启动子序列并克隆入荧光素酶报告基因载体,与E2F1表达载体pCMV-E2F1-HA瞬时单独或共同转染PC3细胞,测定荧光素酶活性以观察E2F1对TFDP3启动子的调控作用,Western blotting检测pCMV-E2F1-HA转染对PC3细胞内TFDP3表达的影响,流式细胞术检测TFDP3与E2F1相互作用对前列腺癌细胞凋亡的影响。结果:成功构建TFDP3基因启动子重组质粒pGL3-TFDP3-promoter,与E2F1表达载体pCMV-E2F1-HA共转染PC3细胞后,TFDP3启动子诱导的荧光素酶活性较单独转染pGL3-TFDP3-promoter显著升高[(1.14±0.06)vs(0.61±0.05), P<0.05]。转染pCMV-E2F1-HA的PC3细胞的TFDP3蛋白表达是未转染细胞的2.7倍[(0.24±0.03)vs(0.09±0.02), P<0.05]。pCMV-E2F1-HA转染后PC3细胞凋亡率较未转染组显著上升[(7.10±0.003)% vs(2.66±0.001)%,P<0.05],而pCMV-E2F1-HA与pcDNA3.1-TFDP3共转染后细胞凋亡率较pCMV-E2F1-HA组显著下降[(4.92±0.002)% vs(7.10±0.003)%,P<0.05]。结论:E2F1可增强TFDP3启动子的活性,增加TFDP3蛋白的表达,其可能通过此机制抑制E2F1诱导的前列腺癌细胞凋亡。  相似文献   
96.
G蛋白耦联受体(GPCR)作为几乎遍布人类每一细胞的功能受体,具有多种生理和病理学功能。GPCR通过激活细胞内的不同的G蛋白亚基,从而激活不同的胞内通路,产生不同生物学效应。近年来,越来越多的研究表明这些受体通过二聚体的形式参与调节生理活动,对信号识别及转导有重要作用,进而为生理变化及疾病治疗提供了新的靶点。现随着生物技术和分子生物学的发展,GPCR二聚体研究已取得了很大的进展。就GPCR所形成的同源、异源二聚体对生理及病理重要作用作一简述。  相似文献   
97.
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.Epidermal growth factor receptor (EGFR), one of the most studied receptor tyrosine kinases, is a drug target for cancer therapy, because its kinase activity correlates with tumorigenicity (1). Under normal conditions, EGFR forms dimers upon ligand binding and induces kinase activation (26). The conformational change of EGFR from tethered to extended form induced by ligand binding involves the exposure of the interface, followed by dimerization, activation, and autophosphorylation (7). The phosphorylation code of EGFR determines the propensity of the downstream signaling network to regulate cell proliferation, survival, migration, and angiogenesis (8, 9).In a significant fraction of patients with nonsmall cell lung cancer (NSCLC), especially patients in Asia and those with the adenocarcinoma subtype, mutations in the kinase domain of EGFR cause constitutive activation and have been identified as an important factor in EGFR dysregulation (10, 11). Particularly, mutation from leucine to arginine at position 858 (L858R) and, less significantly, deletion of exon 19 that eliminates four amino acids (LREA) account for ∼90% of the mutations involved in the constitutive activation of EGFR. These mutations are commonly found in patients with increased sensitivity to EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib (1214). However, most patients with such mutations show resistance within months after TKI therapy, and >50% of them develop a second EGFR mutation, T790M, which confers TKI resistance by increasing the affinity for ATP and decreasing the affinity for TKIs (1517).Studies have demonstrated that the glycans on EGFR participate in the regulation of EGFR function. The number of N-glycans and the degree of branching can regulate the cell-surface expression of EGFR in response to N-acetyl-d-glucosamine (GlcNAc) supplementation (18). In addition, studies with site-directed mutagenesis indicate that the glycans on Asn420 and 579 prevent EGFR from ligand-independent dimerization (1921), and knocking down/out fucosyltransferase 8, the enzyme responsible for the core fucosylation, attenuates EGFR phosphorylation and EGF binding (22, 23). Moreover, our previous study revealed that sialylation and fucosylation suppress EGFR dimerization, autophosphorylation, and EGF-induced lung cancer cell invasion (24).Here, we investigated the effect of sialylation on EGFR dimerization to understand how extracellular sialylation influences intracellular phosphorylation in both wild-type and mutant EGFR. Our biochemical data demonstrated that sialylation could suppress EGFR dimerization by attenuating its association with EGF, and sialylation could significantly and selectively suppress tyrosine phosphorylation and affect the levels of phosphoserine and phosphothreonine on EGFR. In EGFR mutants, especially L858R/T790M, sialylation was observed to have a selective effect on EGFR phosphorylation, and inhibition of sialylation resulted in increased phosphorylation and resistance to gefitinib in this TKI-resistant lung cancer cell line. Further study of these findings should provide a better understanding of EGFR-mediated phosphorylation and disease progression affected by glycosylation and lead to the development of a new therapeutic strategy.  相似文献   
98.
99.
Tau is an intrinsically unstructured microtubule (MT)-associated protein capable of binding to and organizing MTs into evenly spaced parallel assemblies known as "MT bundles." How tau achieves MT bundling is enigmatic because each tau molecule possesses only one MT-binding region. To dissect this complex behavior, we have used a surface forces apparatus to measure the interaction forces of the six CNS tau isoforms when bound to mica substrates in vitro. Two types of measurements were performed for each isoform: symmetric configuration experiments measured the interactions between two tau-coated mica surfaces, whereas "asymmetric" experiments examined tau-coated surfaces interacting with a smooth bare mica surface. Depending on the configuration (of which there were 12), the forces were weakly adhesive, strongly adhesive, or purely repulsive. The equilibrium spacing was determined mainly by the length of the tau projection domain, in contrast to the adhesion force/energy, which was determined by the number of repeats in the MT-binding region. Taken together, the data are incompatible with tau acting as a monomer; rather, they indicate that two tau molecules associate in an antiparallel configuration held together by an electrostatic "zipper" of complementary salt bridges composed of the N-terminal and central regions of each tau monomer, with the C-terminal MT-binding regions extending outward from each end of the dimeric backbone. This tau dimer determines the length and strength of the linker holding two MTs together and could be the fundamental structural unit of tau, underlying both its normal and pathological action.  相似文献   
100.
The GTPase Arf1 is considered as a molecular switch that regulates binding and release of coat proteins that polymerize on membranes to form transport vesicles. Here, we show that Arf1-GTP induces positive membrane curvature and find that the small GTPase can dimerize dependent on GTP. Investigating a possible link between Arf dimerization and curvature formation, we isolated an Arf1 mutant that cannot dimerize. Although it was capable of exerting the classical role of Arf1 as a coat receptor, it could not mediate the formation of COPI vesicles from Golgi-membranes and was lethal when expressed in yeast. Strikingly, this mutant was not able to deform membranes, suggesting that GTP-induced dimerization of Arf1 is a critical step inducing membrane curvature during the formation of coated vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号