首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   12篇
  国内免费   4篇
基础医学   22篇
口腔科学   4篇
临床医学   2篇
内科学   7篇
神经病学   103篇
特种医学   10篇
外科学   21篇
综合类   4篇
预防医学   3篇
眼科学   72篇
药学   6篇
  2023年   1篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   8篇
  2012年   3篇
  2011年   1篇
  2010年   4篇
  2009年   10篇
  2008年   6篇
  2007年   10篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   12篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1991年   10篇
  1990年   8篇
  1989年   7篇
  1987年   6篇
  1986年   3篇
  1985年   11篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
排序方式: 共有254条查询结果,搜索用时 15 毫秒
21.
The human cone electroretinogram (ERG) to a full field flash has been examined on a rod saturating background (17,000 photopic trolands). With strong stimuli, a negative wavelet appears in the falling phase of the a-wave. This response has a latency of 10–12 milliseconds, about 6–8 milliseconds after the start of the a-wave and just before the rising phase of the corneal positive b-wave begins. We suggest that it may represent a hyperpolarizing response of second order retinal neurons.  相似文献   
22.
23.
After completion of neuronal migration to form the cerebral cortex, axons undergo rapid elongation to their intra- and subcortical targets, from midgestation through infancy. We define axonal development in the human parietal white matter in this critical period. Immunocytochemistry and Western blot analysis were performed on 46 normative cases from 20-183 postconceptional (PC) weeks. Anti-SMI 312, a pan-marker of neurofilaments, stained axons as early as 23 weeks. Anti-SMI 32, a marker for nonphosphorylated neurofilament high molecular weight (NFH), primarily stained neuronal cell bodies (cortical, subcortical, and Cajal-Retzius). Anti-SMI 31, which stains phosphorylated NFH, was used as a marker of axonal maturity, and showed relatively low levels of staining (approximately one-fourth of adult levels) from 24-34 PC weeks. GAP-43, a marker of axonal growth and elongation, showed high levels of expression in the white matter from 21-64 PC weeks and lower, adult-like levels beyond 17 postnatal months. The onset of myelination, as seen by myelin basic protein expression, was approximately 54 weeks, with progression to "adult-like" staining by 72-92 PC weeks. This study provides major insight into axonal maturation during a critical period of growth, over an age range not previously examined and one coinciding with the peak period of periventricular leukomalacia (PVL), the major disorder underlying cerebral palsy in premature infants. These data suggest that immature axons are susceptible to damage in PVL and that the timing of axonal maturation must be considered toward establishing its pathology relative to the oligodendrocyte/myelin/axonal unit.  相似文献   
24.
Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a well known and popular herbal medicine used worldwide. Among more than 30 ginsenosides, the active ingredients of ginseng, ginsenosides Rb1 and Rg1 are regarded as the main compounds responsible for many pharmaceutical actions of ginseng. In our study, primary cultures from embryonic mouse mesencephala were exposed to neurotoxic glutamate concentration and potential protective effects of these two ginsenosides on survival and neuritic growth of dopaminergic cells were tested. Treatment of primary mesencephalic culture with 500 microM glutamate for 15 min on the 10th day in vitro (DIV) increased the release of lactate dehydrogenase (LDH) into the culture medium, the propidium iodide (PI) uptake by cultured cells and the total number of nuclei with condensed and fragmented chromatin (apoptotic features) as evaluated with Hoechst 33342. Moreover, it extensively decreased the number of tyrosine hydroxylase immunopositive (TH+) cells and adversely affected the length and number of their neuronal processes. The toxic effect of glutamate was primarily mediated by over-activation of N-methyl-D-aspartate receptor (NMDA) as treatment of cultured cells with (+)-MK 801, an NMDA receptor antagonist, nearly abolished dopaminergic cells loss and LDH release induced by glutamate. When either ginsenoside was added alone for six consecutive days (at final concentrations 0.1, 1, 10, 20 microM), ginsenoside Rb1 (at 10 microM) significantly enhanced the survival of dopaminergic neurons compared to untreated controls. In these cultures, neurite lengths and numbers were not affected by both ginsenosides. Against glutamate exposure, ginsenosides Rb1 and Rg1 could not prevent cell death. However when pre-treating for 4 days or post-treating for 2 days following glutamate exposure, they significantly increased the numbers and lengths of neurites of surviving dopaminergic cells. Thus our study indicates that ginsenosides Rb1 and Rg1 have a partial neurotrophic and neuroprotective role in dopaminergic cell culture.  相似文献   
25.
Transplantation of stem cells and immature cells has been reported to ameliorate tissue damage, induce axonal regeneration, and improve locomotion following spinal cord injury. However, unless these cells are pushed down a neuronal lineage, the majority of cells become glia, suggesting that the alterations observed may be potentially glially mediated. Transplantation of glial-restricted precursor (GRP) cells--a precursor cell population restricted to oligodendrocyte and astrocyte lineages--offers a novel way to examine the effects of glial cells on injury processes and repair. This study examines the survival and differentiation of GRP cells, and their ability to modulate the development of the lesion when transplanted immediately after a moderate contusion injury of the rat spinal cord. GRP cells isolated from a transgenic rat that ubiquitously expresses heat-stable human placental alkaline phosphatase (PLAP) were used to unambiguously detect transplanted GRP cells. Following transplantation, some GRP cells differentiated into oligodendrocytes and astrocytes, retaining their differentiation potential after injury. Transplanted GRP cells altered the lesion environment, reducing astrocytic scarring and the expression of inhibitory proteoglycans. Transplanted GRP cells did not induce long-distance regeneration from corticospinal tract (CST) and raphe-spinal axons when compared to control animals. However, GRP cell transplants did alter the morphology of CST axons toward that of growth cones, and CST fibers were found within GRP cell transplants, suggesting that GRP cells may be able to support axonal growth in vivo after injury.  相似文献   
26.
Ror1 and Ror2 are two novel receptor tyrosine kinases that have been implicated in neuronal differentiation in Caenorhabditis elegans. As a first step toward elucidating their role in the mammalian brain, we analyzed their expression and localization patterns in hippocampal neurons. Our results showed that both receptors are expressed from early stages of development and that their protein levels peak during periods of active synapse formation. Immunocytochemical analysis indicated that Ror1 and Ror2 are highly concentrated in the growth cones of immature neurons and are present throughout the somatodendritic compartment of mature hippocampal cells. Further analysis indicated that they are present not only in the cell membrane but also in Triton- and saponin-insoluble fractions, suggesting that they may be associated with both the cytoskeleton and membrane-bound organelles. Taken collectively, our results suggest that Ror1 and Ror2 might play a role during early stages of development in mammalian central neurons.  相似文献   
27.
Summary The timing of developmental events may be important for the orderly formation of neuronal interconnections. In the present study, the timing of granule cell migration is compared with the arrival and maturation of mossy fiber projections. The opossum was chosen as the experimental animal because its protracted postnatal development enables the examination of developmental sequences not as easily recognized in other more commonly used mammalian species. It is shown that all areas that project to the cerebellum as mossy fibers in the adult opossum do so by postnatal day (PD) 30. Their major target, the granule cells begin inward migration from the external germinal layer (EGL) prior to PD 30, but do not form a distinct internal granular layer (IGL) until PD 35. Migrating granule cells penetrate into the IGL deep to granule cells that have begun dendritic differentiation. By PD 50, Golgi impregnations reveal that many granule cells have numerous immature processes, somal spines and dendritic growth cones. After this age these structures are rare and the vast majority of granule cells exhibit short dendrites with digiform endings. Dendritic differentiation subsequent to PD 54 involves an increase in the length of the shaft and the further maturation of terminal digits. Also from Golgi material, immature mossy fiber endings can be identified in the IGL by PD 35 and exhibit mature characteristics at PD 73. Thus, the formation and maturation of granule cell dendrites and their afferents (mossy fibers) occur over an extended period of time (PD 35–73). Moreover, granule cells exhibit a sequence of development similar to that of Purkinje cells: 1) early arrival of their primary afferent projections in the cerebellar anlage: 2) a period of exuberant dendritic growth; and 3) a protracted and overlapping period for dendritic and synaptic maturation.  相似文献   
28.
In mammalian retina, each diffuse bipolar type stratifies in a distinct layer of the inner plexiform layer. Thus, different types of bipolar cells provide output to distinct visual pathways. Here, the question of whether diffuse bipolar cell types differ with respect to their contacts with short wavelength-sensitive (S-) cones was investigated in the retinas of a New World monkey, Callithrix jacchus, and an Old World monkey, Macaca fascicularis. Subpopulations of OFF bipolar cells were labeled with antibodies to the glutamate transporter Glt-1 and ON bipolar cells were labeled with antibodies to the alpha subunit of the Go protein (Goalpha). Two types of diffuse ON bipolar cells, DB4 and DB6, were identified with antibodies to protein kinase Calpha and CD15, respectively. Cone pedicles were labeled either with peanut agglutinin coupled to fluorescein or with antibodies to the ribbon protein, C-terminus binding protein 2. We found that immunoreactivity for Glt-1 (OFF bipolar cells) is reduced at S-cones in comparison to medium/long wavelength-sensitive (M/L-) cones. Immunoreactivity for Goalpha (ON bipolar cells) is comparable at all cone types. Nearly all M/L-cone pedicles contact the diffuse ON bipolar types DB4 and DB6, but only between 60% and 75% of the S-cone pedicles make contact. Furthermore, the number of dendritic tips of DB4 and DB6 cells at S-cone pedicles is lower than that at M/L-cone pedicles. These results suggest that there is a bias in the S-cone connectivity of diffuse bipolar cells.  相似文献   
29.
Here we reveal a population of cells that express cone photoreceptor opsins that are located in the inner retina, distant from outer retinal photoreceptors. These cells are present in rodents and human. They also express a range of key proteins critical in the cone phototransduction cascade and make contact with other retinal neurons. Their opsins are not generally confined to cellular specialized regions but are present throughout the plasma membrane, although their nuclear configurations are similar to those of outer retinal cones. This population is distinct from the ganglion cells that contain melanopsin and which are known to be inner retinal irradiance detectors regulating circadian behaviour. Surprisingly, the size of the population of short wavelength opsin positive cells in the ganglion cell layer is plastic. In normal animals their number declines with age. However, their numbers increase significantly in response to outer retinal photoreceptor loss, probably by drawing on a pool of inner retinal cells that express cone specific markers, but not opsins.  相似文献   
30.
Melatonin increases neurite formation in N1E-115 cells through microtubule enlargement elicited by calmodulin antagonism and vimentin intermediate filament reorganization caused by protein kinase C (PKC) activation. Microfilament rearrangement is also a necessary process in growth cone formation during neurite outgrowth. In this work, we studied the effect of melatonin on microfilament rearrangements present at early stages of neurite formation and the possible participation of PKC and the Rho-associated kinase (ROCK), which is a downstream kinase in the PKC signaling pathway. The results showed that 1 nm melatonin increased both the number of cells with filopodia and with long neurites. Similar results were obtained with the PKC activator phorbol 12-myristate 13-acetate (PMA). Both melatonin and PMA increased the quantity of filamentous actin. In contrast, the PKC inhibitor bisindolylmaleimide abolished microfilament organization elicited by either melatonin or PMA, while the Rho inhibitor C3, or the ROCK inhibitor Y27632, abolished the bipolar neurite morphology of N1E-115 cells. Instead, these inhibitors prompted neurite ramification. ROCK activity measured in whole cell extracts and in N1E-115 cells was increased in the presence of melatonin and PMA. The results indicate that melatonin increases the number of cells with immature neurites and suggest that these neurites can be susceptible to differentiation by incoming extracellular signals. Data also indicate that PKC and ROCK are involved at initial stages of neurite formation in the mechanism by which melatonin recruits cells for later differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号